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Autonomous ships developments have been driven by recent advances in smart and digital technologies. As 
autonomous systems will be responsible for the MASSs’ operation, their reliability is of paramount importance. 
This study aims to develop a Bayesian network (BN) for monitoring the reliability time variation considering 
subsystem and component levels. The case study of a cargo vessel for short sea shipping operations is employed 
and its power plant is investigated. The BN is developed based on the power plant’s critical components, whilst 
defining the interconnections between these components. Pertinent data for the component failure rates are derived 
from multiple sources, including reliability databases and scientific papers. The derived results demonstrate that the 
ship main engine is identified as the most critical subsystem. This study serves as a foundation for the development 
of a dynamic reliability tool for autonomous ships which can incorporate sensor measurements to update component 
reliability in real-time.  
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1. Introduction 
The maritime industry has faced significant 
advancements in recent years, owing to the use of 
smart and digital technologies. One such 
development is the emergence of autonomous 
ships, which have the potential to revolutionise  
maritime transportation (Kobyliński 2018). 
Several research and industrial projects have 
initiated to address the development of Maritime 
Autonomous Surface Ships (MASS) (Chae, Kim, 
and Kim 2020), (Munim and Haralambides 
2022).  

Human error, which is the leading cause of 
accidents at sea, could potentially be mitigated by 
autonomous ships. Safety levels on board these 
ships are speculated to be equivalent or better than 
conventional vessels (Ventikos, Chmurski, and 
Louzis 2020). Furthermore, autonomous ships 
have the potential to reduce operational times and 
costs, as well as maintenance and crew costs 
(Munim and Haralambides 2022), (Liu et al. 
2016). The increased digitalisation and 

automation of these ships can improve their 
efficiency, leading to emissions reduction and 
their environmental footprint  improvement 
(Dantas and Theotokatos 2023). 

Nonetheless, technological maturity is yet to be  
achieved and further developments are required 
for the deployment of autonomous ships (Bertram 
2016). In this respect, a critical aspect for their 
successful operation pertains to monitoring and 
assessing the health status of their systems. 
Autonomous ships will be equipped with 
advanced sensors that can acquire several 
operational parameters (Kobyliński 2018). The 
acquired sensor data can be further processed to 
enable diagnostic and prognostic functionalities, 
to monitor and predict the health status of the 
employed autonomous systems (Heffner and 
Rødseth 2019). Since, onboard crew will no 
longer be present shipboard to perform corrective 
actions, intelligent monitoring systems are 
essential to provide indications for the safe 
operation in the case of failures or unexpected 
events (Utne et al, 2017). 
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In the existing literature there are various 
approaches that have been applied to monitor the 
health state of marine assets. (M. Cheliotis, 
Lazakis, and Cheliotis 2022) applied a machine 
learning fault detection technique combined with 
Bayesian Networks to examine the probability of 
faults in marine engine subsystems. (Kang et al. 
2023) proposed a hierarchical level fault detection 
and diagnosis method for marine engines. 
(Tsitsilonis, Theotokatos, and Habens 2020) 
developed a framework for the health assessment 
of marine engines using first principles models 
combined with machine learning tools. (Bolbot et 
al. 2021) presented a monitoring approach to 
dynamically estimate the probability of blackout 
in cruise ships using sensor measurements. 

Since few studies focus on the monitoring 
maritime assets at system level, it is important to 
estimate the system health state based on the 
interrelation between system and components. 
This study aims to develop a Bayesian network to 
dynamically monitor the time variation of 
reliability considering subsystem and component 
levels. The case study of a cargo vessel for short 
sea shipping operations is selected to investigate 
its power plant reliability whilst identifying the 
most critical components. 

2. Bayesian Networks for reliability estimation 

2.1 Overview of BNs 

Monitoring tools require appropriate indicators  to 
characterise the components/systems health 
condition (Lei et al. 2018). Reliability reflects the 
degradation of a component/system, hence, it can 
be used as a health indicator (Zagorowska et al. 
2020). The component reliability can be estimated 
by using its failure rate and operating time. 

Nonetheless, for autonomous systems where it is 
essential to characterise the system health 
condition based on the components interactions, 
system-level approaches are required. The most 
widely used methods to estimate the marine/ship 
systems reliability include Reliability Block 
Diagrams (RBD), Fault Trees FT), Markov Models 
(MM), Petri Nets (PN), Bayesian Networks (BN) 
(Bolbot et al. 2019).  

In this study, BNs are adopted since they present 
various benefits. A BN is probabilistic graphical 

model, which represents the dependencies of the 
included random variables in the form of a directed 
acyclic graph (DAG) (Jiang, Zheng, and Liu 2019). 
BNs are generalisations of RBDs and FTs, 
employing the Boolean logic, as nodes can take 
several discrete states in the form of probability 
distributions (Pan et al. 2019). They can be used to 
estimate the system reliability as the network 
arrangement can model the interactions of the 
components that constitute this system. The joint 
probability distribution, which represents the 
system reliability considering all the random 
variables of the BN can be calculated as (Jiang, 
Zheng, and Liu 2019): 

(1)

where  represents the parent set of any 
variable Xi, and  is the conditional 
probability distribution function of variable Xi 
given its parent set. 

2.2 Reliability modelling by BNs 
The reliability modelling techniques employ the 
system decomposition into its components 
(Verma, Ajit, and Karanki 2015). In the case of 
BNs, a DAG is constructed where the root nodes 
represent components, intermediate nodes 
represent subsystems, and the leaf node represents 
the system.  

In the case of component nodes, the prior 
probability is provided as an input, and it represents 
the component reliability. The component 
reliability Ri is calculated using the corresponding 
component failure rate λ considering an 
exponential distribution, using the following 
equation: 

(2)
In the case of subsystems and system nodes, noisy 
gates are used to specify the interactions between 
the component nodes. Noisy gates are a type of 
conditional probability distribution that takes into 
account the values of the parent nodes by 
specifying conditional probability tables (CPT) 
(Bobbio et al. 2001). They lead to a significant 
reduction in computational costs by linearly 
reducing the required parameters for the parents 
number (Bobbio et al. 2001). Noisy-OR and Noisy-
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AND gates are used, which are equivalent to the 
logical gates employed in FTs (Cai et al. 2012).  

The SMILE engine is used to perform the 
reliability calculations (GeNIe 2020). The C++ 
wrapper is imported into MATLAB to render the 
calculations more efficient by providing the input 
for component reliability. 

BNs enable the calculation of importance measures 
which can be used to identify the most critical 
components (Rausand, Barros, and Høyland 2021). 
The criticality importance measure is adopted as it 
reflects  the degree which each component's failure 
affects the system reliability. It is calculated as the 
probability that a specific component contributes to 
system failure, given that the system has already 
failed. 

3. System Description 
The power plant of a cargo vessel for short sea 
shipping operations is considered as a case study. 
In this case, system reliability refers to the ability 
of the power plant to provide propulsive power 
focusing on the autonomous operation. 

The existing (conventional) ship has one propeller 
and two tunnel thrusters, and uses liquefied natural 
gas as its primary fuel. Depending on the ship 
operating mode, the main engine can cover the ship 
propulsion (and electrical via the Power Take-off 
(PTO) system) power demand, whereas the 
auxiliary gensets can cover the electric power 
demand (and may contribute to the propulsion via 
the power take-in (PTI) system). However, in this 
case study, the auxiliary gensets are substituted 
with a battery that is used to cover the power 
demand fluctuations and avoid operating the main 
engine in regions with higher brake-specific fuel 
consumption (BSFC). Figure 1 presents a graphical 
representation of the power plant components. 

 
Fig. 1. Power plant layout 

The investigated power plant is decomposed into 
subsystems that consist of various components. 

Since all the modelled components cannot be 
shown graphically, only the main subsystems are 
shown in Figure 2. The main engine consists of the 
mechanical parts, lubrication, cooling, fuel gas, 
intake and exhaust subsystems whilst the PTO/PTI 
and the onboard electronic devices are considered 
as components. 

 
Fig. 2. Bayesian Network with power plant subsystems 

The component failure rates which are used in this 
study are derived from the pertinent literature as 
well as reliability databases. The complete list is 
presented in the appendix. 

4. Results & Discussion 

This section presents the results obtained from the 
developed BN to evaluate the system reliability of 
the considered hybrid power plant and identify the 
most critical components. 

System reliability is estimated at different time 
intervals. As per  MUNIN project guidelines, the 
unmanned engine room is expected to perform 
reliably without human intervention for a period of 
500 hours (Abaei et al. 2021). Figure 3 presents the 
system reliability time variations obtained by the 
BN for an operating time of 500 hours considering 
time intervals of 50 hours. As expected, the system 
reliability decreased with time, with a final 
reliability value of 0.2 at 500 hours of operation. 
Notably, engine reliability (Figure 4) had a 
significant impact on the overall system reliability, 
decreasing rapidly compared to the electrical 
subsystems present in the considered power plant. 

Figure 4 illustrates the engine reliability time 
variation (considering 500 hour of operation). The 
decrease in system reliability can be attributed to 
several components and subsystems of the engine. 
Based on the obtained results, it is inferred that the 
engine cannot be reliably operated for 500 hours, 
as values lower than 0.7 indicate a high probability 
of critical failure. Furthermore, the results indicate 
that a human operator onboard the vessel may be 
necessary to monitor and intervene in the event of 
engine failure. 
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Fig. 3. System reliability time variation 

 
Fig. 4. Engine Reliability time variation 

Figure 5 presents the criticality importance 
measure for the 10 most critical components at an 
operating of 500 hours. Most of the components 
belong to engine subsystems. This highlights the 
importance of monitoring and maintaining these 
critical components to ensure safe and reliable 
operation of the power plant. Improving the 
reliability of these components can significantly 
affect overall system reliability. 

 
Fig. 5. Critical components based on criticality measure 

This study presented an important first step 
towards the dynamic reliability estimation of 
autonomous ship power systems. In the case of 
autonomous operations, intelligent monitoring 
capabilities are essential to assess the systems and 
components; health state, providing information 
into the decision support systems for potential 

failures and their effect on  system performance 
(Ellefsen et al. 2019). 

Nonetheless, to ensure the effectiveness of 
advanced monitoring systems in autonomous ship 
operations, it is essential that these systems receive 
input from real-time measurements. A limitation of 
this study is that the BN calculations are static since 
component reliability is calculated based on 
historical failure rates, without considering 
evidence from the actual operating conditions. 
Future research is recommended to employ 
shipboard sensor measurements to improve the 
estimation of system/component reliability and 
consequently update their health state. 

Additionally, the investigated power plant was 
decomposed into subsystems and components in a 
certain way which is susceptible to epistemic 
uncertainty. Epistemic uncertainty arises due to 
various factors that contribute to a lack of complete 
knowledge or information about the system. 
Potential causes of epistemic uncertainty include 
lack of adequate or precise data, incomplete 
understanding of underlying system structure and 
assumptions made during the analysis (Mi et al. 
2016). 

Furthermore, the developed BN decomposes the 
subsystems into components without considering 
the likelihood of unexpected events that can affect 
system reliability. Even if the components function 
properly, system operation can potentially be 
interrupted. One notable example is the Viking Sky 
incident, where a blackout was caused by a signal 
indicating a low level of lubrication oil in the 
generator sets due to adverse weather conditions 
(Johansen et al. 2023). Future studies could 
potentially capture the effects of these events to 
provide more accurate estimations. 

4. Conclusions 

In this study, a Bayesian network (BN) was 
developed to monitor the time variation of 
reliability at both subsystem and component levels 
for the case of a cargo vessel for short sea shipping 
operations. The results demonstrated that the 
critical components of the power plant concern 
mainly the main engine, which significantly affects 
the overall system reliability. At 500 hours of 
operation without crew intervention, the estimated 
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system reliability dropped to unacceptable levels to 
be considered for autonomous operations. In 
addition, the investigated power plant was 
investigated without considering the effect of 
unexpected events, which can further reduce the 
overall system reliability.  

This study can serve as the foundation towards 
building a dynamic reliability tool for autonomous 
ships that can potentially incorporate real-time 
sensor measurements to update the component 
reliability. It can support the monitoring of safety 
and reliability metrics for autonomous ships, and 
ultimately render them a viable solution for the 
shipping industry. Further research is necessary to 
explore the feasibility and potential benefits of this 
approach in real-world scenarios. 
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Appendix  
The failure rates (λ) used as input to this study are 
provided in Table 1. 

Table 1. Component failure rates 

Component λ [×10–6 h–1] Source 
Engine Components 

Centrifugal pump 769.62 (SINTEF and 
NTNU 2015) 

Lubricating oil 
filter 457.00 (Dionysiou and 

Bolbot 2021) 

Heat exchanger 53.89 (SINTEF and 
NTNU 2015) 

Pump motor 36.51 (SINTEF and 
NTNU 2015) 

Pressure relief 
valve 10.85 (SINTEF and 

NTNU 2015) 

Sump tank 12.70 (Dionysiou and 
Bolbot 2021) 

Thermostatic 
valve 39.60 (SINTEF and 

NTNU 2015) 

Strainer 1370.00 (Dionysiou and 
Bolbot 2021) 

Pressure sensor 0.62 (Hauge and 
Onshus 2010) 

Flow control 
valve 39.60 (SINTEF and 

NTNU 2015) 
Temperature 
sensor 0.30 (Hauge and 

Onshus 2010) 

Bleedoff valve 10.85 (SINTEF and 
NTNU 2015) 

Flowmeter 2.00 (Hauge and 
Onshus 2010) 

Gas filter 0.42 (Milioulis et al. 
2022) 

Gas regulator 39.60 (SINTEF and 
NTNU 2015) 

Shut-off valve 26.43 (SINTEF and 
NTNU 2015) 

Solenoid valve 39.60 (SINTEF and 
NTNU 2015) 

Throttle valve 39.60 (SINTEF and 
NTNU 2015) 

Compressor 196.00 (Milioulis et al. 
2022) 

Turbine 93.85 (SINTEF and 
NTNU 2015) 

Pressure built up 
unit 28.83 (SINTEF and 

NTNU 2015) 
Heat exchanger 
LNG 42.75 (Milioulis et al. 

2022) 
Evaporator 4.51 (Bolbot 2020) 

LNG tank 77.80 (Milioulis et al. 
2022) 

Piston rod 16.31 (Cheliotis 2020) 
Piston 32.62 (Cheliotis 2020) 
Cylinder liner 16.31 (Cheliotis 2020) 
Cylinder head 16.31 (Cheliotis 2020) 

Igniter 14.85 (SINTEF and 
NTNU 2015) 

Camshaft 11.85 (SINTEF and 
NTNU 2015) 

Crankshaft 11.85 (SINTEF and 
NTNU 2015) 

Bearing 16.31 (Cheliotis 2020) 
Engine valve 
outlet 83.10 (SINTEF and 

NTNU 2015) 

Engine valve Inlet 83.10 (SINTEF and 
NTNU 2015) 

PTO/PTI 

Motor 43.76 (SINTEF and 
NTNU 2015) 

Switchboard components 
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Hardware 17.60 (Hauge and 
Onshus 2010) 

Software 6.18 (SINTEF and 
NTNU 2015) 

Electronic components 

Circuit breaker 0.80 (Hauge and 
Onshus 2010) 

Inverter 21.31 (Gao et al. 2021) 

Bus bar 0.41 (Vedachalam and 
Ramadass 2017) 

Battery components 

Battery 63.57 (Hauge and 
Onshus 2010) 

BMS 4.54 (SINTEF and 
NTNU 2015) 
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