
Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Edited byMário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio
©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore.
doi: 10.3850/978-981-18-8071-1_P599-cd

A Formal Verification Framework for Model Checking Safety Requirements of a

Simulink Landing Gear Case Study

Tim Gonschorek, Hannes Stützer, Frank Ortmeier

Faculty of Computer Science, Otto-von-Guericke-University Magdeburg, Germany.
E-mail: fname.lname@ovgu.de

Leon Wehmeier

Department of Production and Wood Technology, OWL University of Applied Sciences and Arts, Germany.
E-mail: leon.wehmeier@th-owl.de

Michael Oppermann

Aribus Operations GmbH, Germany. E-mail: michael.oppermann@airbus.com

The request for computer-aided system verification approaches increases with rising system complexity. So,
integrating formal verification approaches, e.g., model checking, into the typical engineering workflow could help
keep up with this rising complexity. Therefore, however, such an analysis of a system model must cover widely
applied design specification languages, e.g., Matlab Simulink or Modelica.
This paper shall provide an approach for transforming a Simulink model into the input language of a model checking
verification tool. Therefore, we modeled a widely applied case study of an aircraft landing gear system to provide a
formal framework that can later be translated into a Kripke structure. A widely used formalism for verification tool
input languages. The set of Matlab Simulink elements for which we provide a translation is derived from the model
itself. To prove that the translation preserves the model’s semantics, we also define a formal representation of the
modeled Simulink elements. The translation enables us to apply several model checking tools for formal verification.

Keywords: Model-based Safety Assessment, Model Checking, Integrated Safety Design.

1. Introduction

Model-based design and assessment are more

and more applied within the development of

dependable, software-intensive systems. Espe-

cially when the intended system behavior is speci-

fied, dynamical description formalism support the

verification thereof, i.e., does the specification

meet all requirements given by the authorities and

corresponding norms.

Although both working with model-based ap-

proaches, designers and analysts often do not

work on identical models. System designers apply

languages and tools supporting the design of the

specification. System analysts, however, tend to

apply languages and tools that enable the use of

logical reasoning and formal methods, e.g., the-

orem provers or model checking tools. This can

lead to inconsistencies between the models and

information losses, especially when the analysis

results are communicated back to the designer.

What is missing, in our point of view, is a

mathematically sound intermediate representation

between design and verification tool languages.

Such a representation would allow for automatic

transformations as well as consistency checks,

in both directions, between design and verifica-

tion models. In contrast to already existing im-

plementations from design languages like SysML

or MatLab/SIMULINK into a single verification

language, we intend to define a theoretical trans-

formation that can be easily used for a wide set of

verification languages.

To reach a wide application range, we decided

to define this transformation for a subset of Mat-

Lab/SIMULINK and STATEFLOW. For defining a

sound transformation, the semantics of the design

model are required. In addition, we define a pro-

jection from the defined transformation into the

notation of Kripke structures. Such Kripke struc-

1143

1144 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

tures can be used as a foundation for many quali-

tative, time-discrete state machine representation

languages, often applied for model checking tools.

In this paper, we focus on time discrete, syn-

chronous behavior description elements, which is

sufficient for the majority of design models of

relevant size. The SIMULINK elements chosen in

this work were derived i) from a review of industry

models and ii) from model relevant for an applied

case study of a Landing Gear System. Further, the

applicability of the translation and the applicabil-

ity of the model checking approach for large scale

models, are proven by analyzing the mentioned

Landing Gear System case study.

In the following, we present a brief overview

over related work (sec. 2). We present the formal

semantics in section 3 as well as the semantics

of particular SIMULINK blocks in section 4. In

section 5 we validate our semantics and transfor-

mation framework on a larger case study.

2. Related Work

There already exist tools in the literature that can

translate SIMULINK models into model checker

input languages for formal analysis. These works,

however, either focus on specific SIMULINK sub-

sets or limit themselves to providing transforma-

tion rules into the respective formal framework’s

input language instead of defining explicit formal

semantics for the considered SIMULINK models.

In Meenakshi et al. (2006), the authors demon-

strate their tool for generating SMV code from

avionic SIMULINK design models. They fo-

cus on the practical aspects of implementing a

SIMULINK translation engine.

Joshi and Heimdahl (2005) briefly describe

the implementation of a translation engine, but

mainly focus on the generation of fault trees (resp.

minimal cut sets) based on the translation of

SIMULINK models. Marriott et al. (2012) describe

the translation to Circus, and provide a multitude

of practical translation rules for translating indi-

vidual elements of SIMULINK to Circus.

Scaife et al. (2004) define a “safe” subset

of SIMULINK STATEFLOW models and provide

translation stubs for translating these STATE-

FLOW elements to Lustre. Tripakis et al. (2005)

provide alternative Lustre representations for

discrete-time SIMULINK models. Another such

work is Zhan et al. (2017), who provide a rather

comprehensive functional description and semi-

formal model semantics definition. They encode

SIMULINK models in the HCSP format (higher-

order logic hybrid process modeling language) for

the Isabelle/HOL proof environment.

In Filipovikj et al. (2016), the authors describe a

translation of SIMULINK models to the UPPAAL

language. It focuses on the practical side of the

transformation and the inclusion of statistical as-

pects in the SIMULINK models and analyses.

The authors of R. Reicherdt (2015) worked

on translating SIMULINK models in the Boo-

gie language. They provide a set of language-

specific translation rules. They also only rely on

a language-implicit model semantics definition by

describing the model to Boogie transformation.

While all these works provide integrations be-

tween SIMULINK and model checking frame-

works, there is, to the best of our knowledge, no

mathematically rigorous semantic transformation

that may be used for dynamic verification methods

such as model checking.

The only further works known to us deal-

ing with creating a mathematical semantics defi-

nition for parts of SIMULINK are Dragomir et al.

(2018); Tiwari (2002). In Tiwari (2002) the

authors, however, focus specifically on seman-

tics for hybrid STATEFLOW automatons mode-

led in SIMULINK, providing a semantic defi-

nition specifically tailored for the STATEFLOW-

component of SIMULINK. Due to their specific

use case, they did not need to include semantics

for regular SIMULINK blocks and the composition

of blocks and models, as we did. In Dragomir

et al. (2018), the authors present a formal re-

presentation. But the target is defined as a static

verification in contrast to the dynamic verification

approaches enabled by our presented approach.

3. A Formal Semantics for SIMULINK

Since we only consider time-discrete, syn-

chronousa SIMULINK models, we can define any

aAll standard SIMULINK blocks are time-synchronous.

1145Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

block as follows.
A formal abstraction of a SIMULINK block B is

the tuple

B = 〈I, O, S,R, F, P0〉
with I being the block’s input alphabet, O the

output alphabet, S the set of the internal states,

R ⊆ (I × S) × S the left-total transition relation

which defines the update step from the current

block state s ∈ S to the block state s′ ∈ S

whenever the model progresses to the next step

such that 〈�i, �s, �s′〉 ∈ R, and F : I, S → O a

function computing the output value depending on

the input and block state. P0 defines the block’s

initial state, i.e., its state in step 0.

3.1. Composition of SIMULINK Blocks

A SIMULINK model, in general, contains more

than a single block. Blocks are connected such

that the output of one block is used as input of

another block with the intention to further process

computational results.

Therefore, the semantics of a global SIMULINK

model block is a recursive composition of all in-

ternal blocks until, on a global context, no input or

output is connected to another block but rather to

particular input and output blocks.

For the case that all outputs of a block are con-

nected to inputs of a single block, the semantics of

the composition of two blocks B1 and B2 can be

defined as follows:

Definition 3.1 (I/O-Complete Composition).
If all outputs from a block B1 are connected to
the inputs of a block B2, we call this composition
�B1 : B2� I/O-complete. The semantics of the
resulting global block �B1 : B2� is given by:

�B1 : B2� = 〈IB1, OB2, SB1 × SB2, R, F,

〈P0B1 , P0B2〉〉

where

F : IB1 × SB1 × SB2 → OB2;

〈 �iB1, �sB1, �sB2〉 �→ FB2(M(FB1(�iB1, sB1)),

sB2)

R = {(〈�i1, �s1, �s2〉, 〈 �s′1, �s′2〉)
|〈〈�i1, �s1〉, �s′1〉 ∈ RB1,

〈〈FB1(�i1, �s1, �s2〉, �s′2〉 ∈ RB2}

where iB1 ∈ IB1, iB2 ∈ IB2, and sB1 ∈
SB1, sB2 ∈ SB2 and M : OB1 → IB2 is a

mapping function to reorder the connected signals

if required (e.g. if �o1 = 〈a, b〉 and �i2 = 〈b, a〉, then

M(〈a, b〉) = 〈b, a〉).

In contrast to the I/O-complete compositions,

SIMULINK blocks can be parallel, i.e., they do not

have any connection via input or output.

Definition 3.2 (Parallel Composition). The se-
mantics for a parallel composition �B1‖B2� of
blocks B1 and B2 is defined as

�B1‖B2� = 〈IB1 × IB2, OB1 ×OB2, SB1 × SB2, R,

F, 〈P0B1 , P0B2〉〉

where

R = {〈(�iB1
� �iB2), (�sB1

� �sB2), (
�s′B1

� �s′B2
)〉|

〈〈 �iB1, �sB1,
�s′B1〉, 〈 �iB2, �sB2,

�s′B2〉〉 ∈ RB1×
RB2}

F : (IB1 × IB2)× (SB1 × SB2) → OB1 ×OB2;

〈�i1, i2� , �s1, �s2〉 �→ FB1(�i1, �s1)
�FB2(i2� , �s2)

b

At the moment, we covered the compositions

for a complete connection of the I/O relation of

two blocks (cf. Def. 3.1) and no connection be-

tween two blocks (cf. Def. 3.2). In most cases,

however, it is the case that some outputs of B1
are connected to inputs of B2 and the other open

inputs and output are connected to other blocks or

the outputs act as global SIMULINK block outputs.

For this partial sequential composition the result-

ing block’s B is given in Def. 3.3.

Definition 3.3 (Partial Sequential Composition).
The semantics of a partial sequential composition
�B1;B2�, where only a subset of the outputs of B1
map to inputs of B2 is given by:

�B1;B2� = 〈I,O, SB1 × SB2, R, F, 〈P0B2 , P0B2〉〉

bThe notation (�a��b) is used to express the concatenation of

the vectors �a and�b, i.e. �a��b =

(
a
b

)
.

1146 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

where:

I = IB1 × {〈iB2j 〉|iB2 ∈ IB2, iB2j not connected

to any output of B1}
O = {〈oB1j 〉|oB1 ∈ OB1, output port number j

is not connected to B2} ×OB2

F : I×SB1 × SB2 → O;

〈�i1, �i2, �s1, �s2〉 �→
FB1unconnected

(�i1, �s1)
�

FB2(M(FB1(�i1, �s1), �i2), �s2)

R = {〈〈�i, �s1, �s′1〉, 〈�j, �s2, �s′2〉〉|
〈�i, �s1, �s′1〉 ∈ RB1, 〈�j, �s2, �s′2〉 ∈ RB2,

�j = M(FB1(�i, �s1), IB2)}

Applying these three definitions we are able to

derive the overall semantics of a global SIMULINK

block (or model) from its individual elements by

computing the definitions bottom up. The con-

nections of the block are, therefore, encoded in

the derived transition relation R by applying the

output F of a block as input of the composed

block.

3.2. Block Types

We introduce the definitions of stateful and state-

less blocks to differentiate between blocks only

requiring the computation of a formula on the

input values (i.e., are basically time-invariant and

independent of previous model states) from those

where the block’s output depends not only on the

current inputs but also the block’s state (which in

turn depends on previous states and inputs).

A stateless block can be defined as a block

〈IB, OB, SB, RB, FB, P0B〉 where the state is ir-

relevant, i.e., ∀i ∈ I.∀q ∈ S.∀s ∈ S.F (i, s) =

F (i, q) and immediate inputs relevant for compu-

ting the output value via F , i.e., ¬(∀i ∈ I.∀j ∈
I.∀s ∈ S.F (i, s) = F (j, s))

A stateful block 〈IB, OB, SB, RB, FB, P0B〉
can be defined as a block where ¬(∀i ∈ I.∀j ∈
I.∀s ∈ S.F (i, s) = F (j, s)) and ¬(∀i ∈ I.∀q ∈
S.∀s ∈ S.F (i, s) = F (i, q)), i.e., the current

input and the block state is required to compute

the current outputs. We can further differentiate

between stateful blocks by dividing them into

stateful immediate and stateful non-immediate
blocks.

Stateful non-immediate blocks are blocks

which’s outputs only depend on the current block

state and not the current input, like for example a

memory blockc: ∀i ∈ I.∀j ∈ I.∀s ∈ S.F (i, s) =

F (j, s) ∧ ¬(∀i ∈ I.∀q ∈ S.∀s ∈ S.F (i, s) =

F (i, q)).

Stateful immediate blocks are blocks which’s

outputs depend on the current block state and cur-

rent input values, i.e., inputs immediately affect

output, and state affects output: ¬(∀i ∈ I.∀j ∈
I.∀s ∈ S.F (i, s) = F (j, s)) ∧ ¬(∀i ∈ I.∀q ∈
S.∀s ∈ S.F (i, s) = F (i, q))

3.3. Execution Semantics/Traces and
Paths

The semantics �〈IB, OB, SB, RB, FB, P0B〉� of a
tuple 〈IB, OB, SB, RB, FB, P0B〉 can be defined as
the set of all (infinite) sequences Π of tuples Πk =

〈�ik, �ok〉 such that all �ik are valid input vectors
for the system at step k, and valid initial values
for k = 0 or possible successors to a previous

input vector �ik−1, and such that all �ok are valid

initial output vectors, i.e., �ok = FB(�ik, �sk) where
�sk ∈ SB is the current system state computed by
repeatedly applying the transition relation to the

system state and input values �ij for 0 ≤ j ≤ k.

Formally,

{
〈 �ik−1, �sk−1, �sk〉 ∈ RB k > 0

�sk ∈ S0 k = 0
.

Thus,

�〈IB,OB, SB, RB, FB, P0B 〉� = {Π|Π = 〈Π0, ...,

Πn, ...〉,Πk = 〈�ik, �ok〉, 〈�i0, �s0, �s1〉 ∈ RB,

�ok = FB(�ik, �sk), s0 ∈ S0, P0B |= S0}

3.4. Transforming a SIMULINK Block to
a Kripke Structure

Most input languages of qualitative model check-

ing tools are based on Kripke structures as input

semantics. For the sake of making the defined

SIMULINK block semantics as applicable as pos-

sible with other model checking tools, we define a

mapping to a general Kripke structure.

cThe current inputs, of course, affect the block’s next state via

R and therefore cannot be discarded.

1147Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Definition 3.4 (Kripke Structure). As defined in
Clarke et al. (2018), a Kripke structure K over a
set of atomic propositions AP is represented by
the tuple

K = (S, S0, T, L)

with S as a finite set of states, S0 ⊆ S re-

presenting the non-empty set of all initial states,

T = S × S as a left-total transition relation, such

that for every state s ∈ S there exists a state

s′ ∈ S with (s, s′) ∈ T , and L : S → 2AP

as a function labeling each state with the atomic

propositions evaluating to true in the state.

The transformation from B = 〈IB, OB, SB,
RB, FB, P0B〉 to K = (S, S0, T, L) is straight
forward. For the set of states S of the resulting
Kripke structure, we must take into account SB
but also the input values IB. Therefore, we first
generate an internal Kripke structure K∗ from
SB, RB, P0B with S = SB, T = RB and S0

as the set of all possible initial states that can
result from IB and P0B . The set of atomic propo-
sitions AP can be generated by using the names
of the internal block variables and a unique id
for each SIMULINK block. The labeling function
L now maps this AP to the corresponding state
from S where the actual value of the SIMULINK

variable fits to the proposition. As all (considered)
Simulink data types are strictly speaking finite and
discrete, they can be encoded in AP - for example
as bit vectors. For the behavior of the global block,
the overall system output O and corresponding
output function F are not of interest. Further,
the output is enclosed within the state space and,
therefore, can be stored as additional formula F
for later use. For input blocks we can also generate
another Kripke structure KI , such that the size of
S equals the number of possible input values. AP
and L are defined accordingly such that each input
value bijectively maps to a state of the Kripke
structure. And, as the input values are chosen non-
deterministically, S0 = S and T = S × S,
i.e., each value can occur at each time. With K∗
and KI the overall semantics of K is the parallel
composition of the two Kripke structures

�K� = �K∗‖KI�

To create a bisimilar Kripke structure K for
any given (Simulink) model 〈IB, OB, SB, RB,
FB, P0B〉, using the semantics notation as defined
earlier, written as

K ∼ 〈IB, OB, SB, RB, FB, P0B 〉

and therefore

∃Fmap.∀Π ∈ �〈IB, OB, SB, RB, FB, P0B 〉�.
∀π ∈ �K�.

Fmap(Π) = π ∧ F−1
map(π) = Π

the following mappings can be used to generate

KI and K∗:
For generating K∗, an (arbitrary) bijective map-

ping of the model’s states SB (being a state vec-
tor containing the current values for each state
variable) to a state set SK∗ as well as a labeling
function LK∗ are required, i.e.,

∃FSL :SB → {LK∗(sK)|sK ∈ SK∗}.
F−1
SL (FSL(s)) = s

with AP and SK∗ chosen appropriately. The
output values o of the model and blocks forming
the model can be computed by applying FB to
the inverse mapping F−1

SL of the Kripke struc-

ture’s states. For KI , we choose SKI , AP, LKI

such that there is one state in KI with ap-
propriate labeling for each possible input in
the original model B, i.e., ∃FmapI : IB →
{LKI (s)|s ∈ SKI}. The corresponding transition
relation TKI ∈ SKI × SKI is derived from the
possible model inputs defined by RB for the (non-
deterministic) inputs IB:

T = {〈s, s′〉|i = F−1
mapI (s), i

′ = F−1
mapI (s

′),

sB ∈ SB, s′B ∈ SB, s′′B ∈ SB,

〈i, sB, s′B〉 ∈ RB, 〈i′, s′B, s′′B〉 ∈ RB}
This makes creating the transition relation TK∗

possible by deriving it from RB and KI as fol-
lows: Inputs i are modeled by the parallel struc-
ture KI (see above). Combined with FSL from
earlier, which allows us to map between SB and
SK∗ , we have mapped and modeled the inputs
in their entirety and defined a mapping for the
model’s states. This enables us to define a tran-
sition TK∗ ⊆ SK∗ × SK∗ modeling the Simulink
model’s transition RB ⊆ IB × SB × SB:

TK∗ ={〈sKj
, s′Kj

〉|
sKj

= FSL(sB), s′Kj
= FSL(s

′
B),

iB = F−1
mapI (LKI (sKI)), 〈iB, sB, s′B〉 ∈ RB,

sKI = πKI

j , πKI ∈ �KI�, sKj
= πK∗

j ,

πK∗ ∈ �K∗�}
Finally, we combine the parallel Kripke struc-

tures KI and K∗ to K = KI‖K∗. The resulting

1148 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

structure K is, by construction, a bisimulation of

the original model B.

4. Semantics of Various Simulink Blocks

The considered SIMULINK blocks are either

purely computational stateless blocks (sums, log-

ical operators, etc.) or stateful blocks, i.e., blocks

that also depend on the current (and past) system

statesd. The following subsections provide a brief

excerpt of the semantics of some of the most

commonly used blocks in our analyzed models.

4.1. Stateless Operators

Logical Operators For the stateless, binary logi-

cal operators and, or, xor, their respective nega-

tions, and the unary operator not, their re-

spective semantics are given by �logop� =

〈I,O, ∅, R, F, ∅〉 where I = {
,⊥}2, R =

{〈i, ∅, ∅〉 ||i ∈ I} and a block specific output

function F.

Stateless Relational and Math Operators Si-

milarly, for the relational operators less than,

less than or equals, greater than, greater than

or equals, equals, and not equals, their respec-

tive semantics can be defined as �relop� =

〈I,O, ∅, R, F, ∅〉 where I = {DATATY PE2},

R and O as before, and F : I × S →
O; 〈〈i1, i2〉, ∅〉 �→ i1�i2 =
 with� representing

the block’s selected operator - e.g. ≤. Mathema-

tical operation blocks, e.g. sum, product, can be

defined analogously.

Other Stateless Operators Another commonly
used block is the Switch block which passes
through one of its two input signals i1 and i3,
depending on whether a specified condition is
met by the boolean input i2. The semantics using
our framework can be defined as �switch� =
〈I,O, ∅, R, F, ∅〉 where the input and output do-
mains follow their intuitive definitions, R as pre-
viously and

{
F : I × S → O; 〈〈i1, i2, i3〉, ∅〉 �→ 〈i1〉 i2 =

F : I × S → O; 〈〈i1, i2, i3〉, ∅〉 �→ 〈i3〉 i2 = ⊥

dThus, the stateless blocks only affect the transition relation

of the underlying product of the stateful components’ automa-

tons.

4.2. Stateful Simulink Blocks

Now we take a demonstrative look at model com-

ponents requiring state, i.e., access to information

from previous steps.

Memory A SIMULINK memory block and the

variants thereof delay the input data by a number

of steps before committing them to the output

signal. Formally, �mem� = 〈I,O, S,R, F, P0〉
with I, O, S equivalent to the domains of the in-

put signal (plus the configured initial output value,

if that is outside the input signal’s domain), R =

{〈�i, �s, �s′〉|s′ =�i}, F : I ×S → O; 〈〈i0〉, 〈s0〉〉 �→
〈s0〉, and P0 as configured initial output value of

the block parameters. The semantics of memory

elements with a depth of more than 1 can be de-

fined as chaining multiple 1-step memory blocks

using the composition theorems defined earlier.

4.3. Stateflow

In our review of relevant design models, we found

that for more complex designs STATEFLOW state

charts were often used to express the desired

behavior. This section provides a brief concep-

tual overview of STATEFLOW, and specifies com-

monly used STATEFLOW automaton types and

their respective semantics.

4.3.1. Stateflow Automatons

In the interest of brevity, we shall keep the formal-

ization of the semantics of STATEFLOW’s basic

mechanism to a minimum. Basically, the variable

assignments occurring while a STATEFLOW au-

tomaton is in a specific state (during assignment)

as well as transition activation conditions and

variable assignments linked to transitions can be

expressed as a hybrid of Moore and Mealy au-

tomatons, which is easy to map to the presented

framework: The transition relation R is transpar-

ently mapped, the input alphabet is given by I , the

outputs are given by applying the output relation

on the current state and inputs, and the required

states encoded in S.

4.3.2. Stateflow Entry and Exit Conditions

Besides the during assignments of variables in a

state, STATEFLOW also supports entry and exit

1149Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

assignments. For exit assignments, the relevant

state variable(s) are assigned the specified value in

the step in which the state machine’s state changes

from the state with the exit assignment to any

different state. Entry assignments are assigned in

the step in which a transition leading into the

relevant state activates. This behavior is simple to

encode.

5. Prototyping and Early Observations

Using the semantics as described previously, we

created a SIMULINK translation tool to validate

our proposed semantics. This transforms informa-

tion from the SIMULINK model into SAML Güde-

mann and Ortmeier (2010), which is a relatively

straight-forward process using the mapping of the

formal semantics to Kripke structures (as Kripke

structures can easily be mapped to SAML). The

tool extracts the blocks, block parameters, and

signals from a given SIMULINK model. From this

information, the tool creates an abstract syntax

tree (AST), where every block is represented by

equivalent SAML elements. Signals are implic-

itly translated by assigning a unique name to the

AST elements that map the blocks and referencing

them to exchange data. Once the SAML genera-

tion is complete, we use the VECS analysis frame-

work to create a compatible input for the nuXmv

model checker and parse the nuXmv results.

Figure 1. Global architecture of the landing gear sys-
tem Boniol and Wiels (2014).

As an example, the landing gear system in-

troduced by Boniol and Wiels (2014) Boniol

et al. (2017) was translated into a Simulink 2019b

model. The global architecture of the system is

depicted in Figure 1.

For the safety analysis, three Failure Condi-

tions (FCs) were inserted in a Failure Condition

Observer Simulink block (see Table 1). A FC

describes a hazardous system state, which can lead

to an unwanted or dangerous system behavior. The

requirements R42 and R11 introduced in the case

study Boniol and Wiels (2014) were modeled

assuming the system is in normal mode, as well

as an additional one from an aircraft level view on

the system.

Table 1. FCs represented in the Simulink model.

FC Description

FC1 Both the electro-valves controlling gear ex-
tension and retraction are open.

FC2 At least one gear is not locked extended or
at least one door is not closed 15 seconds
after the command handle has been moved
to the extension position and remained in
that position.

FC3 The green light of the pilot interface is on
and all others are off indicating that the
gears are locked extended, even though at
least one of them is not.

In the nuXmv model, the FCs are translated into

safety properties, i.e., invariants. For all three FCs,

their absence could be proven using the nuXmv

model checker. The runtimes were 112 seconds

for FC1, 2.51 seconds for FC2 and 28.2 seconds

for FC3. For validating our results, we, on the one

hand, negated the FCs and generated a suitable

counterexample and, on the other hand, generated

a set of representative sequences the model must

contain. By encoding those sequences into the

corresponding acceptor automaton, we prove that

these sequences were contained within the for-

mal model encoding. This generation of execution

traces, however, is in our point of view a benefit of

the model-based analysis applying model check-

ing in contrast to static analysis. The mentioned

SIMULINK, SAML and nuXmv models are avail-

able online Stützer et al. (2023).

6. Conclusion

We presented a concept for a comprehensive,

extensible formalism to define model semantics

for discrete time SIMULINK models. Based on

1150 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

these formal semantics, we created an automated

translation to generate SAML code from arbi-

trary SIMULINK models, which can be used to

apply state-of-the-art formal analysis techniques

to SIMULINK models. By explicitly defining the

formal semantics underlying our transformation,

we enable easy extensibility of our tool and

lay the foundations for integrations with other

analysis and transformation tools by providing a

shared, unambiguous understanding of the ana-

lyzed SIMULINK models. We showed the appli-

cability of our transformation and corresponding

verification on a realistic case study taken from

the literature.

Acknowledgement

This work was partially funded by the german fed-
eral state Saxony Anhalt and the European Re-
gional Development Fund (ERDF) under grant number
ZS/2020/12/153625 FuE 2104/00021 (Autosafe).

References

Boniol, F. and V. Wiels (2014). The landing

gear system case study. Communications in

Computer and Information Science 433.

Boniol, F., V. Wiels, Y. Aı̈t-Ameur, and K.-D.

Schewe (2017, Apr). The landing gear case

study: challenges and experiments. Interna-

tional Journal on Software Tools for Technol-

ogy Transfer 19(2), 133–140.

Clarke, E. M., T. A. Henzinger, H. Veith, and

R. Bloem (2018). Handbook of Model Check-

ing. Cham: Springer International Publishing.

Dragomir, I., V. Preoteasa, and S. Tripakis (2018).

The refinement calculus of reactive systems

toolset. In D. Beyer and M. Huisman (Eds.),

Tools and Algorithms for the Construction

and Analysis of Systems, Cham, pp. 201–208.

Springer International Publishing.

Filipovikj, P., N. Mahmud, R. Marinescu, C. Se-

celeanu, O. Ljungkrantz, and H. Lönn (2016).

Simulink to uppaal statistical model checker:

Analyzing automotive industrial systems. In

FM 2016: Formal Methods, Volume 9995 of

LNCS, pp. 748–756. Cham: Springer Interna-

tional Publishing.

Güdemann, M. and F. Ortmeier (Eds.) (2010).

A Framework for Qualitative and Quantitative

Model-Based Safety Analysis.

Joshi, A. and M. P. E. Heimdahl (2005). Model-

based safety analysis of simulink models us-

ing scade design verifier. In Computer

Safety, Reliability, and Security, Volume 3688

of LNCS, pp. 122–135. Berlin, Heidelberg:

Springer Berlin Heidelberg.

Marriott, C., F. Zeyda, and A. Cavalcanti (2012).

A tool chain for the automatic generation of

circus specifications of simulink diagrams. In

Abstract State Machines, Alloy, B, VDM, and

Z, Volume 7316 of LNCS, pp. 294–307. Berlin,

Heidelberg: Springer Berlin Heidelberg.

Meenakshi, B., A. Bhatnagar, and S. Roy (2006).

Tool for translating simulink models into in-

put language of a model checker. Volume

4260 of LNCS, pp. 606–620. Berlin, Heidel-

berg: Springer Berlin Heidelberg.

R. Reicherdt (2015). A Framework for the Au-

tomatic Verification of Discrete-Time MATLAB

Simulink Models using Boogie. Phd thesis, TU

Berlin, Berlin.

Scaife, N., C. Sofronis, P. Caspi, S. Tripakis, and

F. Maraninchi (2004). Defining and translating

a safe subset of simulink/stateflow into lustre.

In G. Buttazzo (Ed.), Proceedings of the fourth

ACM international conference on Embedded

software - EMSOFT ’04, New York, New York,

USA, pp. 259. ACM Press.

Stützer, H., W. Outzen, L. Bedau, and T. Gon-

schorek (2023). Landing gear system models.

Tiwari, A. (2002). Formal semantics and analysis

methods for simulink stateflow models.

Tripakis, S., C. Sofronis, P. Caspi, and A. Curic

(2005). Translating discrete-time simulink to

lustre. ACM Transactions on Embedded Com-

puting Systems 4(4), 779–818.

Zhan, N., S. Wang, and H. Zhao (2017). Formal

Verification of Simulink/Stateflow Diagrams.

Cham: Springer International Publishing.

