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Drone Logistic Network (or simply, DLN) is an emerging topic in the sector of transportation networks with
applications in goods delivery, postal shipping, healthcare networks etc. It is a rather complex system which have
different types of drones and ground facilities and it also requires a robust design of the network to ensure optimal
time for delivery, efficiency, resilience, risk and cost efficiency along with different other optimizations of ‘Key
Performance Indicators’. Moreover, in sectors like healthcare networks, we need to be extra cautious whilst modeling
the network as the consequence of failure is severe. Besides these, we also need to work with real-time telemetry data
which can be very noisy at times. To deal with the above mentioned technicalities, we propose a robust surrogate
modeling strategy through propagation of interval information from the observed data. We are interested in using this
surrogate model to simulate contingency scenarios or simply to construct a Digital Twin (DT). For this particular
contribution, we are specifically interested in estimating the drone flight time in uncertain conditions. With our
proposed method, we obtain interval estimates for our quantities of interest, which can be interpreted as the set of
possible values in between the optimistic and pessimistic bounds.

Keywords: Drone Logistic Network, Gaussian process regression, Epistemic Uncertainty, Interval Probability.
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IGP Imprecise Gaussian Process

ImGP Interval-mean Gaussian Process

NIGP noisy input Gaussian process

VRP Vehicle Routing Problem

1. Introduction

In the recent years, we realized that a distributed

healthcare network can improve the efficiency of

a healthcare system significantly. Drone logistic

network for delivering medical goods is one such

application of distributed healthcare network. A

trial for such network was performed near Rome

by Leonardo and Telespazio (Li et al. (2020)),

where the medical objects were delivered in 25

minutes by drone while the road journey along

the coast took about 45-60 minutes. The effect

of drone transportation on biological samples has

also been analyzed by F. V. Daalen and Geerlings

(2017) to investigate the benefits of a drone lo-

gistic system and it has been observed that there

are no negative effects on the objects for a turn

around time of less than 4 hours. Several other

research works have also been carried out for

Drone Logistic Network (DLN). Matternet (2020)

announced a collaboration with lab facilities in

Berlin to transport patients’ samples from hospi-

tals by drone; Amukele et al. (2016) investigated

whether the medical specimens are affected by

drone transport; Quintanilla Garcı́a et al. (2021)

successfully conducted flight tests for medical de-
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livery in Spain etc.

Following this direction, the UK government

is currently focusing on the aspects of an au-

tonomous DLN that will allow the delivering of

medical equipment and assistance to remote areas.

The CAELUS project, financed by the UK Indus-

trial Strategy Future Flight Challenge Fund, has

the aim of exploring the usage of drone delivery

systems for dispatching of medical items. This

paper presents part of the analyses done during the

second phase of the project. The main objective is

to create a digital blueprint - a combination of a

DT models of the complex network and a set of

optimization tools - of the DLN with a twofold

applicability. To achieve a robust framework, we

explore the possibility of using a interval valued

surrogate modeling scheme for which we adapt

the model proposed by Mangili (2016).

The first application of the digital blueprint

corresponds to the design process of the whole

DLN, which has to be optimal for the given key

performance indicators as defined by the stake-

holders. One such key performance indicator is

to deliver the medical goods within a certain time

interval. To do so, we need to estimate the time a

drone of specific type takes. However, we notice

that the flight time of a drone can be influenced

by two major uncertain parameters: wind speed

and wind direction. As a result the estimated time

can be unreliable at times and we want to predict

a reliable interval within which the flight time is

supposed to lie.

As hinted earlier, we will adapt the notion

Imprecise Gaussian Process (IGP) to quantify the

associated uncertainty in the drone flight time. But

using a complete prior ignorance can be restrictive

for practical purposes, so we initiate our model by

considering an interval for the location parameter

of the Gaussian process with non-zero center. That

is, we are interested in incorporating some prior

information efficiently so that our posterior esti-

mate of the Gaussian process is not too wide. This

can be interpreted as an approximate Bayesian

computation similar to noisy input Gaussian pro-

cess (NIGP) proposed by McHutchon and Ras-

mussen (2011).

The rest of the paper is organized as follows,

we will first give a short introduction to Gaus-

sian process in Section 2, followed by our pro-

posed method of Interval-mean Gaussian Process

(ImGP) in Section 3. In this section, we provide

different theoretical aspects of our method and

give the posterior bounds for mean and variance

of the ImGP. We give an algorithmic formulation

to train ImGP in Section 4 and show our results

with a synthetic dataset in Section 5. Finally, we

illustrate our method for the drone flight estima-

tion in Section 6 for three different types of drones

and conclude this paper in Section 7.

2. Gaussian Process

Let y be an output and x be a p-dimensional input

which satisfies the following functional relation-

ship

y = f(x) + ε (1)

where ε is the associated noise following a normal

distribution with mean 0 and variance σ2. Our

main objective is to estimate this unknown func-

tion f with the help of observational data and a

natural choice for that is to use a Gaussian process

prior for the unknown function f .

Let μ := μ(x) : R
p → R be a mean func-

tion and kθ := kθ(x, x) : R
p → R be a co-

variance function with hyper-parameter θ. Now,

for a vector of n inputs x and corresponding noisy

observation of outputs y, we have

y ∼ GP
(
μ̃,K + σ2In

)
(2)

where μ̃ :=((μ(x1), . . . , μ(xn)) and K is an n×n

matrix such that [K]ij = kθ(xi,xj).

Now for a new vector of m inputs, the joint

distribution is given by[
y

f∗

]
∼ N

([
μ̃

μ̃∗

]
,

[
K + σ2In K∗T

K∗ K∗∗

])
(3)

where K∗ is an n×m matrix such that [K∗]ij =

kθ(x
∗
i ,xj) and K∗∗ is an m×m matrix such that

[K∗∗]ij = kθ(x
∗
i ,x

∗
j ). Then, the posterior mean

and variance of f∗ is given by:

μ̂∗ = μ̃∗ +K∗K−1
n (y − μ̃) (4)

K̂∗∗ = K∗∗ −K∗K−1
n K∗T (5)

where Kn = K + σ2In.
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2.1. Information about Input Variables

Gaussian Process defined above is a well inves-

tigated method, especially, in the field of engi-

neering where we often need to use surrogate

methods to find approximate solutions of complex

problems. However, in many cases the inputs can

be heavily influenced by underlying uncertainty

of system and quantifying that can be a rather

challenging task.

McHutchon and Rasmussen (2011) proposed

NIGP to deal with inputs under severe uncertainty

with the assumption that these inputs follow a

Gaussian distribution. In general, NIGP performs

very well in reducing the variance of the Gaus-

sian Process. However, this can be limiting, as in

reality the noise of the input variable does not

need to be in nature. More specifically, we may

not have any distributional knowledge on the input

variable. This motivates us to look into the possi-

bility of using interval information for Gaussian

process.

Let x be a p-dimensional input and y be the

corresponding noisy observation of f(x). Now, let

xj ≤ xj ≤ xj for each j = 1, · · · , p. Then, we

have

y = f
(
xc
1 + xr

1h, · · · , xc
p + xr

ph
)
+ ε (6)

where xc
j =

xj+xj

2 , 0 ≤ xr
j ≤

xj−xj

2 and h = ±1.

Now, by applying Taylor’s series expansion, we

have

f
(
xc
1 + xr

1h, · · · , xc
p + xr

ph
)

= f(xc) + hxr∇f(xc) + · · · (7)

where xc:=(xc
1, . . . , xc

p) and xr:=(xr
1, . . . ,

xr
p). Clearly, this expansion is convergent when

‖xr‖ < 1. For ‖xr‖ > 1, we can assume it to be

divergent to get rid of computational difficulties.

In both the cases, we can approximate f(x) as a

combination of center and radius so that,

Mc = f(xc) (8)

and

r ∈ R :=

{
[0, xr∇f(xc)], ‖xr‖ < 1

[0,∞), ‖xr‖ ≥ 1
(9)

Note that, it is not possible to compute the exact

values of Mc or r, as it involves the unknown

function f . Instead, we follow the approach of

McHutchon and Rasmussen (2011) and obtain a

standard Gaussian process for the function f then

we calculate the derivative of the mean. We can

do that as the derivative process of a Gaussian

process is also a Gaussian process as shown by

Solak et al. (2002).

3. Interval-mean Gaussian Process

As hinted earlier, we are interested in using the

interval information of the input variables. So,

we exploit the notion of IGP Mangili (2016) to

propose ImGP which allows us to vary the mean

of the Gaussian process within a bounded interval.

This particular modification of IGP allows us to

incorporate prior information efficiently as well as

learn from the data. This is particularly useful as in

our Vehicle Routing Problem (VRP), majority of

the quantities have a positive compact support and

it is reasonable to use that information to reduce

the imprecision.

Definition 3.1 (ImGP). Given a base covariance

kernel kθ(x, x) and a constant Δ > 0, we define

the ImGP as the set of Gaussian processes, such

that

GΔ =

{
GP

(
Mc + rh, kθ(x, x) +

1 + r

Δ

)

: h = ±1, r ∈ R
}

(10)

where Mc is the center and R is the set of all

possible values of the radius of the interval mean

respectively.

Theorem 3.1. Let f(x) follows an ImGP as de-

fined in Eq. 10 and let kx = [kθ(x, x1), . . . ,

kθ(x, xn)]
T . Then the posterior of f(x) is a Gaus-

sian process with mean

μ̂(x) = kT
xK

−1
n (y − ŷ1n) + ŷ (11)
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and variance

k̂(x, x) = kθ(x, x)− kT
xK

−1
n kx

+
(r + 1)(1− sTk kx)

T (1− sTk kx)

Δ + (r + 1)Sk

(12)

where

ŷ =
(r + 1)sTk y +Δ(Mc + rh)

Δ + (r + 1)Sk
, (13)

sk = K−1
n 1n, Sk = 1T

nK
−1
n 1n and 1n is the n-

dimensional vectors with entries being equal to 1.

Proof. The proof of the above theorem is similar

to the one provided by Mangili (2016) and can be

obtained very easily with simple algebraic manip-

ulation. Therefore, we omit the proof for brevity

of the space.

Theorem 3.2. Let r ∈ R := [0, r). Then the

posterior bounds for mean and variance of ImGP

is given by:

μ̂(x) = kT
xK

−1
n y

+
(
1− kT

x sk
) ΔMc + (r + 1)sTk y

Δ+ (r + 1)Sk

− ∣∣1− kT
x sk

∣∣ Δr

Δ+ (r + 1)Sk
; (14)

μ̂(x) = kT
xK

−1
n y

+
(
1− kT

x sk
) ΔMc + (r + 1)sTk y

Δ+ (r + 1)Sk

+
∣∣1− kT

x sk
∣∣ Δr

Δ+ (r + 1)Sk
(15)

and

k̂(x, x) = kθ(x, x)− kT
xK

−1
n kx

+
(1− sTk kx)

T (1− sTk kx)

Δ + Sk

(16)

k̂(x, x) = kθ(x, x)− kT
xK

−1
n kx

+
(1− sTk kx)

T (1− sTk kx)
Δ

r+1 + Sk

.
(17)

Note that R is defined as an open set as we may

not have a finite radius. Even in that case, we

can simply find the bounds very easily using the

limiting case.

We would also like to mention here that these

bounds are much simpler to deal with than the

one given by Mangili (2016) for IGP. However,

this can be slightly wider in some cases. However,

from the practical point of view, our bounds are

easier to implement we do not need to use inter-

mediate conditions for finding tighter bounds.

Proof. To obtain the posterior bounds of the

mean, we first simplify the expression of the

mean. From (11) we have,

μ̂(x)

= kT
xK

−1
n (y − ŷ1n) + ŷ (18)

= kT
xK

−1
n y +

(
1− kT

xK
−1
n 1n

)
ŷ (19)

= kT
xK

−1
n y +

(
1− kT

x sk
)
ŷ (20)

Now, since ŷ can be written as

ŷ =

Δ(Mc+rh)
r+1 + sTk y
Δ

r+1 + Sk

(21)

we get

Δ(Mc−r)
r+1 + sTk y
Δ

r+1 + Sk

≤ ŷ ≤
Δ(Mc+r)

r+1 + sTk y
Δ

r+1 + Sk

. (22)

Therefore, we need to check two different condi-

tions based on the sign of
(
1− kT

x sk
)
.

a)
(
1− kT

x sk
)
> 0: In this case, the posterior

mean is increasing w.r.t ŷ. That is the lower bound

of the posterior mean is obtained for the lower

bound of ŷ. Therefore the lower bound is given

by:

μ̂(x) = kT
xK

−1
n y

+
(
1− kT

x sk
) Δ(Mc − r) + (r + 1)sTk y

Δ+ (r + 1)Sk

(23)

= kT
xK

−1
n y

+
(
1− kT

x sk
) ΔMc + (r + 1)sTk y

Δ+ (r + 1)Sk

− (
1− kT

x sk
) Δr

Δ+ (r + 1)Sk
(24)

= kT
xK

−1
n y

+
(
1− kT

x sk
) ΔMc + (r + 1)sTk y

Δ+ (r + 1)Sk

− ∣∣1− kT
x sk

∣∣ Δr

Δ+ (r + 1)Sk
. (25)
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Similarly the upper bound is given by:

μ̂(x) = kT
xK

−1
n y

+
(
1− kT

x sk
) ΔMc + (r + 1)sTk y

Δ+ (r + 1)Sk

+
∣∣1− kT

x sk
∣∣ Δr

Δ+ (r + 1)Sk
. (26)

b)
(
1− kT

x sk
)
< 0: In this case, the posterior

mean is decreasing w.r.t ŷ. That is the lower bound

is obtained for the upper bound of ŷ and vice

versa. Therefore proceeding like before, we get

the following lower bound:

μ̂(x) = kT
xK

−1
n y

+
(
1− kT

x sk
) ΔMc + (r + 1)sTk y

Δ+ (r + 1)Sk

+
(
1− kT

x sk
) Δr

Δ+ (r + 1)Sk
(27)

= kT
xK

−1
n y

+
(
1− kT

x sk
) ΔMc + (r + 1)sTk y

Δ+ (r + 1)Sk

− ∣∣1− kT
x sk

∣∣ Δr

Δ+ (r + 1)Sk
. (28)

Similarly the upper bound is given by:

μ̂(x) = kT
xK

−1
n y

+
(
1− kT

x sk
) ΔMc + (r + 1)sTk y

Δ+ (r + 1)Sk

+
∣∣1− kT

x sk
∣∣ Δr

Δ+ (r + 1)Sk
. (29)

For the bounds of the posterior variance we

need to check the term containing the imprecision

factor Δ. From (12) we have

(r + 1)(1− sTk kx)
T (1− sTk kx)

Δ + (r + 1)Sk

=
(1− sTk kx)

T (1− sTk kx)
Δ

r+1 + Sk

. (30)

Since (1 − sTk kx)
T (1 − sTk kx) > 0 the poste-

rior variance is monotonically increasing w.r.t r.

Therefore,

k̂(x, x) = kθ(x, x)− kT
xK

−1
n kx

+
(1− sTk kx)

T (1− sTk kx)

Δ + Sk

(31)

k̂(x, x) = kθ(x, x)− kT
xK

−1
n kx

+
(1− sTk kx)

T (1− sTk kx)
Δ

r+1 + Sk

(32)

4. Training of ImGP

As mentioned earlier, we incorporate a bi-level ap-

proach similar to NIGP by McHutchon and Ras-

mussen (2011) to train our ImGP. In the primary

level, we use the training data to obtain a standard

Gaussian process. We then compute the posterior

mean and its derivative at xc and construct the

interval of our ImGP.

Finally, we use the interval mean obtained by

the primary level to initialize our ImGP. We train

our model with the dataset and optimize the hyper-

parameter of the ImGP w.r.t. suitable loss func-

tion. We summarize this method in Algorithm 1.

In general, it might appear that we are using the

data twice. However, the data is only being used

for obtaining approximate bound for the prior

mean of the Gaussian process. Therefore, it can

be argued that this approach is somewhat similar

to empirical Bayes methods.

5. Simulation Studies

For the simulation studies with synthetic dataset,

we consider the following function

y = sin(x) + cos2(x) + x3 + ε (33)

where ε is a random noise following a normal dis-

tribution with mean 0 and variance 1. To generate

the training dataset x, we sample 20 observations

from a normal distribution with mean 0 and vari-

ance 3.

To perform our analyses, we consider three

different levels of imprecision: 0.1, 1 and 10. We

show our analyses in Figure 1. In the figure,

the green curves are used to show the bounds

of the posterior mean; the red curves are used

to show confidence region corresponding to the

upper bound of the covariance; the black curves

are used to show the exact functional value at the
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Algorithm 1 Interval-mean Gaussian Process

(1) Fit standard GP (mean 0) with the training

dataset [y,x] and obtain the posterior mean

given by:

μ̂(x) = kx

(
K + σ2In

)−1
y

(2) Optimize the hyperparameter of the kernel

function using log marginal likelihood.

(3) Find the derivative of the posterior mean at xc

∇μ̂(x) |xc= ∇kx |xc

(
K + σ2In

)−1
y

(4) Compute the mean and radius of the location

parameter of ImGP

(a)

Mc = f(xc) ≈ μ̂(xc)

(b)

r ∈ R ≈
{[

0, xr∇μ̂(x) |xc

]
, ‖xr‖ < 1

[0,∞), ‖xr‖ > 1

(5) Fit ImGP with interval mean specified by cen-

ter Mc and radius r.

test points. The black circles show the training

points of the ImGP.

Clearly, as we should expect, for smaller values

of Δ ie. the level of imprecision, the bounds are

close to each other. As we increase the value of

Δ, the bounds become wider. We also notice that

for the first case (Δ = 0.1), the exact functional

value at test points is not contained within the

confidence region for higher values of x. How-

ever, as we increase the level of imprecision in

the other two cases, this functional value remains

within the confidence region. This leads to the

question of choosing the level of imprecision of

ImGP. For instance, we can consider a weighted

utility average of the lower and upper bounds of

the posterior mean and use that to compute the

root mean squared error. This way, we can get

a single value for the posterior estimate and use

method like cross-validation to tune the parameter

Δ. In a more generalized setting, we can also use

bi-level cross-validation with the mixing weight of

the posterior bounds.
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x

µ̂
Fig. 1. Prediction using ImGP for synthetic dataset
with different levels of imprecision: Δ = 0.1 (top),
Δ = 1 (middle) and Δ = 10 (bottom).

6. Estimating Drone Flight Time with
ImGP

For the DLN, we are currently using three dif-

ferent times of drone. We can use a high fidelity

model of the drone flight to calculate the flight

time between point ‘A’ and point ‘B’. However,

this high fidelity model is complex and compu-

tationally expensive. As a result, using this high

fidelity model is nearly impossible for the purpose

of the optimization of the DLN. Instead we use

telemetry data to measure the different modeling

variable of the flight time and construct a surro-

gate model for optimization. Specifically, there are

5 different variables, which are most important in

computing the drone flight time: distance between

‘A’ and ‘B’, maximum velocity of the drone, wind

speed, wind direction and payload. The last three

variables are uncertain beyond the measurement

noise. In Figure 2, we show these variables from

the dataset with the first drone type. We can no-

tice that they are spread in the entire region and

therefore having a normality assumption can lead

to unreliable estimates. Instead we work with the

support of the variable. For instance, for wind

direction it lies between [0, π] and payload it lies

between [0, 5]. For the wind speed we rely on the

observational data.

Similar to our analyses with the synthetic data,

we consider three different levels of imprecision
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to perform our analysis, which 0.01, 0.1 and 1.

We also use similar color scheme to illustrate the

bounds of the posterior mean and the confidence

bounds. Clearly, we do not have exact functional

expression anymore to illustrate the goodness of

fit. Instead we use black circles to show the value

at test points.

We notice that for the first two types of the

drones the result are somewhat similar in terms

of containing the observed flight time within the

confidence region for different values of Δ. For

the third drone type, however, we notice that the

associated uncertainty is extremely high and we

fail to contain one of the points even for Δ = 1.

It can also be seen that for higher values of Δ, the

lower bound of the posterior mean is usually neg-

ative. Of course, in reality, it is not possible. The

negative values of the lower bound only represent

the uncertainty in data. In practice, we can assume

that the values can be very close to 0 and simply

truncate the estimates at 0.

In general, we can report these intervals to rep-

resent the epistemic uncertainty associated with

the data. But in many cases, we need a single

estimate to perform additional tasks. For that, we

can use a weight parameter and obtain a weighted

estimate from this interval so that

μ̂ω(x) = ωμ̂(x) + (1− ω)μ̂(x). (34)

This way, we can interpret this weight parameter

as a degree of confidence. Clearly, when the de-

gree of confidence is zero, we get μ̂ω(x) = μ̂(x).

Therefore, μ̂ω(x) gives the maximum value for

the expected time taken by a drone or simply the

worst-case scenario.

7. Conclusion and Future Work

In this paper, we discussed a possibility of using

an ImGP as a robust surrogate model for problems

where the modeling variables highly uncertain in

nature. We provide a simple training algorithm

for this method and showed their benefits using

a synthetic dataset. More importantly, we use this

method to illustrate the problem of estimating the

drone flight time in a DLN for healthcare pur-

pose and we can use these bounds to plan drone

scheduling for delivering medical goods. Besides

0 20 40 60 80

0
2

4
6

8
1
0

W
in

d
 S

p
e
e
d

0 20 40 60 80

0
.0

1
.0

2
.0

3
.0

W
in

d
 D

ir
e
ct

io
n

0 20 40 60 80

0
1

2
3

4
5

P
a
yl

o
a
d

Training point indices

Fig. 2. Training points associated with the wind speed
(top), wind direction (middle) and payload (bottom).
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Fig. 3. Prediction using ImGP for drone type 1 with
Δ = 0.01 (top), Δ = 0.1 (middle) and Δ = 1
(bottom).

the practical aspects of ImGP, we also provide an

alternative proof for obtaining the posterior means

which simplifies the expressions of the posterior

mean and removes several intermediate condi-

tions suggested by Mangili (2016). This certainly,

makes the posterior bound a little wider than the

IGP. However, it reduces the computational costs

and makes it easier to work with.

Currently we are only relying on the location

parameter to express our lack of knowledge on

the distributional properties of the modeling vari-

ables. Ideally, we should also use the variance

term to represent our lack of knowledge and

correct the final variance term accordingly. For



2460 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

5 10 15 20

0
5
0

1
0
0

1
5
0

5 10 15 20

−
5
0

0
5
0

1
0
0

1
5
0

2
0
0

5 10 15 20

−
4
0
0

0
2
0
0

6
0
0

Test point indices

µ̂

Fig. 4. Prediction using ImGP for drone type 2 with
Δ = 0.01 (top), Δ = 0.1 (middle) and Δ = 1
(bottom).
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Fig. 5. Prediction using ImGP for drone type 3 with
Δ = 0.01 (top), Δ = 0.1 (middle) and Δ = 1
(bottom).

instance, in NIGP, McHutchon and Rasmussen

(2011) use normality assumption to correct the

variance term by using the variance of the input

variables. This remains the missing block of the

puzzle. Moreover, in many cases, we may need

to consider the data in intervals. Especially, when

multiple telemetries are present in the same loca-

tion, their readings can be different. In such cases,

we need to formulate the problem in a way where

we can use interval data to train the ImGP.
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