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With the support of Internet of Things (IoT) devices, it is possible to acquire data from degradation phenomena and
design data-driven models to perform anomaly detection in industrial equipment. This approach not only identifies
potential anomalies but can also serve as a first step toward building predictive maintenance policies. In this work,
we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and
other industrial machines. This work evaluates a combination of pre-processing techniques and machine learning
(ML) models with a low computational cost. We use a combination of pre-processing techniques such as Fast
Fourier Transform (FFT), Wavelet Transform (WT), and binning, which are well-known approaches for extracting
features from raw data. We also aim to guarantee an optimal balance between multiple conflicting parameters,
such as anomaly detection rate, false positive rate, and inference speed of the solution. To this end, multiobjective
optimization and analysis are performed on the evaluated models. Pareto-optimal solutions are presented to select
which models have the best results regarding classification metrics and computational effort. Differently from most
works in this field that use publicly available datasets to validate their models, we propose an end-to-end solution
combining low-cost and readily available IoT sensors. The approach is validated by acquiring a custom dataset from
induction motors. Also, we fuse vibration, temperature, and noise data from these sensors as the input to the proposed
ML model. Therefore, we aim to propose a methodology general enough to be applied in different industrial contexts
in the future.
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1. Introduction

Industrial machines are fundamental assets in

many contexts, and their proper functioning is cru-

cial to maintain production efficiency and avoid-

ing costly downtimes. Prognostics and Health

Management (PHM) is a multidisciplinary field

that focuses on developing methodologies and

tools to monitor and diagnose the health of ma-

chines by predicting anomalous behavior, pre-

venting failures, and improving reliability, safety,

and performance (Nguyen et al., 2022). With the

advent of the IoT, it is possible to acquire data

from sensors and devices in industrial environ-

ments (e.g. vibration, temperature, and acoustic

sensors). This data can be used to design data-

driven models that perform anomaly detection of

industrial equipment (Gan, 2020).

Artificial Intelligence (AI) has emerged as a

powerful tool for solving complex problems.

The field of AI encompasses a wide range of

techniques and algorithms that enable machines

to learn, reason, and make decisions based on

data (Wang and Siau, 2019). AI techniques such

as machine learning (ML), and deep learning (DL)

are used currently in many fields, such as health-

care, finance, and manufacturing (Chien et al.,

2020; Goodell et al., 2021). In particular, AI has

proven to be a valuable asset in Predictive Main-

tenance (PdM) for industrial machines Luo et al.

(2022). By using monitoring data, AI can detect

anomalies and potential issues within the ma-

chine, leading to proactive maintenance, reducing

downtime, and improving availability.

In this work, we focus on anomaly detection

in induction motors, which is a challenging task

due to the complex and nonlinear nature of their
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degradation phenomena. This can lead to multiple

fault modes and subtle changes in their opera-

tional behavior. Therefore, we propose a novel

methodology based on ML pipelines considering

a low computational cost, and online and real-time

applications.

Our approach uses FFT (Walker, 2017), WT

(Chen et al., 2016), and binning as pre-processing

techniques to extract relevant features from

raw data (Kuhn et al., 2013). Then, we use

OCSVM (Pang et al., 2022), IF (Elnour et al.,

2020), and Local Outlier Factor (LOF) as ML

models to classify whether the system has an

anomaly or not. To ensure an optimal balance

between multiple conflicting parameters, such as

anomaly detection rate, false positive rate, and

computational cost of the solution, we perform

multiobjective optimization (Tian et al., 2021)

and analysis on the evaluated models. We present

Pareto-optimal solutions to select which models

have the best results regarding classification met-

rics and computational effort.

Most of the related literature on anomaly de-

tection is based on publicly available datasets that

tend to have data acquired with costly and reliable

sensors. In contrast, our work presents an end-to-

end solution involving a combination of low-cost

and readily available IoT sensors to acquire data

from induction motors. The fusion of vibration,

temperature, and noise data from these sensors is

provided as input to the evaluated ML models.

This approach is general enough for our method-

ology to be applied in different industrial contexts

in the future.

This paper is organized as follows. Section 2

provides an overview of related works. Section 3

shows the methodology used to deploy this study.

Section 4 presents the results. Finally, Section 5

concludes the study and provides future directions

related to this investigation.

2. Related Works

Concerning nonintegrated devices (i.e. separated

sensors), Yang et al. (2016) proposed a method-

ology based on multilayer feedforward networks

(MFNs) to address broken-rotor-bar and bearing

faults from induction motors using data from

current, accelerometers, gyroscope, and micro-

phone signals. Delgado-Arredondo et al. (2017)

use Complete Emsemble Mode Decomposition

(CEEMED) to decompose and analyze acoustic

and vibration signals to detect faults in induction

motors - in this work, they use an acoustic micro-

phone and an accelerometer as sensors. Our work

is based on a non-invasive device to monitor the

machine’s condition with vibration, temperature,

and acoustic sensors condensed in one device.

Using only acoustic signals, Glowacz (2018)

propose a methodology for fault diagnosis follow-

ing the traditional pipeline in this field - prepro-

cessing the data, performing feature extraction,

and classification - using a low-cost microphone

and a digital voice recorder. In our work, however,

we used an integrated sensor to capture acoustic

signals.

Li et al. (2019) use kernel-based support vector

machine to detect anomalies in the data collected

from mechanical equipment. The vibration signals

are measured through accelerometers at different

rotating speed. The present work evaluates a com-

bination of sensors, and the signal is analyzed and

processed using Wavelet Transform (WT), and

FFT. Glowacz et al. (2019) use Method of Se-

lection of Amplitudes of Frequencies (MSAF-12),

as well as FFT and mean vector sum to perform

feature extraction of vibration signals and detect

deterioration on the rotor bar in motors using low-

cost accelerometers.

To detect fault occurrence in real time, an online

anomaly detection method with streaming data

is proposed by Liu et al. (2021), based on fine-

grained feature forecasting. An unsupervised on-

line anomaly detection model is used to analyze

the vibration signals, as well as a fault alarm strat-

egy is purposed for the prediction of fine-grained

features. The present work is also aimed at real

time anomaly detection with fusion of accelerom-

eter, gyroscope, and microphone signals.

In order to detect faults in complex electrome-

chanical equipment, a multi-mode non-Gaussian

variational autoencoder (MNVAE) is used to an-

alyze the vibration signals in Luo et al. (2022).

The OCSVM and other deep learning approaches

are compared to prove the superiority of MNVAE
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to other methods. Due to the lower computational

cost, the current work is focused on the evalu-

ation of traditional ML algorithms for anomaly

detection. The evaluation of deep learning mod-

els, including but not limited to Convolutional

Neural Networks (CNNs) and Variational Autoen-

coders(VAEs), remains a topic for future investi-

gation.

3. Proposed Methodology

The proposed method combines an IoT sensor

using off-the-shelf components with a multiob-

jective optimization of several well-known pre-

processing and anomaly detection algorithms.

Overall, the aim of this method is to produce an

optimal configuration of hyperparameters in terms

of both detection accuracy and processing speed.

An overview of this methodology is presented in

Figure 1.

3.1. IoT Sensors

As part of the current research, we develop an

easy-to-install IoT device composed of low-cost

sensors that collect data to be analyzed by the

anomaly detection algorithm. This device has a

neodymium magnet in its structure that is strong

enough to fix it on any steel surface. This device

collects the temperature, vibration, and noise mag-

nitudes of the machine through an integrated set

of sensors with a defined frequency. The collected

data is structured and sent via MQTT to a cloud

messaging service, as illustrated in Figure 1. This

service is responsible for storing the messages

with the collected data until they are consumed by

the anomaly detection model.

The control unit of the device is composed of an

ESP32 processor module and the sensor elements

are composed of a 6-axis vibration sensor, 2 noise

sensors, and a temperature sensor.

The vibration sensor ISM330DLCTR has a 3-

axis accelerometer and a 3-axis gyroscope with

a sampling rate of 1kHz. The noise sensor con-

sists of 2 identical microphones SPH0645LM4H-

B, positioned internally on opposite sides of the

device’s casing. One microphone is at the bottom

and the other one at the top, both operate at a

sampling rate of 20kHz. The temperature is mea-

sured with the analog sensor MCP9700T-E/TT in

the range between -40ºC and 150ºC and is then

converted to a digital signal. The final temperature

reading is an average of 100 samples.

3.2. Preprocessing

Each sample from the temperature sensor, ac-

celerometer, gyroscope, and microphone is ac-

quired by the IoT device and stored in a database.

With the exception of temperature, the samples

are multidimensional vectors. Thus, the next step

of data preparation aims at retrieving the most

relevant information from any given data packet.

In this work, we consider three techniques for

preprocessing our data: Fast Fourier Transform

(FFT); Discrete Wavelet Transform (DWT); and

Binning.

3.3. Dimensionality Reduction

Principal Component Analysis (PCA) is a popular

technique used for dimensionality reduction in

various fields, but mostly in data science and ma-

chine learning. PCA aims to capture the maximum

amount of variation in the data with a smaller

number of variables or dimensions, which pre-

serves most of the variance by retaining the com-

ponents with the highest eigenvalues. PCA can

identify and eliminate redundant or highly corre-

lated variables, this allows it to reduce data redun-

dancy. Also, models built on PCA-transformed

data are often faster and more efficient than those

built in original data. By transforming the data

into a lower-dimensional space, PCA makes it

easier to visualize and interpret the relationships

between variables. In addition, PCA generalizes

well, because it can be applied to a wide range of

data types. Overall, PCA is a powerful technique

for reducing the dimensionality of data while re-

taining most of the relevant information.

3.4. Anomaly Detection

Once enough normal operation data is collected,

an anomaly detection algorithm can be trained.

Note that the training is performed exclusively on

the normal data and thus the algorithm is expected

to identify future, and possibly rare, anomalous

observations based on its knowledge of normal
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Fig. 1.: An overview of the proposed methodology.

data patterns. Three commonly used anomaly de-

tection algorithms are considered in the present

work: One-class SVM (Support Vector Machine);

Isolation Forest (IF); and Local Outlier Factor

(LOF). We implemented these models using the

sci-kit learn library (Pedregosa et al., 2011) - the

chosen ML models are described below.

One-class SVM is a machine learning technique

used to identify unusual or anomalous data points

in a given dataset. One-class SVM requires only

normal training data to build a model that can

distinguish between normal and anomalous data

points. In the current implementation, the fol-

lowing hyperparameters are considered: Kernel -

specifies the kernel type to be used in the algo-

rithm (linear, 3rd order polynomial or RBF); Nu -

an upper bound on the fraction of training errors

and a lower bound of the fraction of support vec-

tors, from [0.25, 0.5, 0.75]; Tolerance - a stopping

criterion, from [10−4, 10−3, 10−2].

The Isolation Forest works by constructing a

random forest of decision trees. The isolation

score is calculated based on the number of splits

needed to isolate the anomaly, and it is normalized

by the average path length of unsuccessful splits

in the tree. In the present work, the IF is im-

plemented using two parameters: the n estimators

(the number of base estimators in the ensemble)

and the max samples (the number of samples to

draw from X to train each base estimator). The

main advantage of Isolation Forest is it requires

less memory and computational resources.

LOF measures the local density around a data

point by comparing its distance to its k-nearest

neighbors with the average distance of those

neighbors to each other. If the distance of a data

point to its k-nearest neighbors is significantly

smaller than the average distances of those neigh-

bors to each other, then the data point is con-

sidered to be in a dense region and has a low

LOF value. On the other hand, if the distance is

significantly larger, then the data point is consid-

ered to be in a sparse region and has a high LOF

value. The LOF algorithm assigns anomaly scores

to each point based on its LOF value, with higher

scores indicating more anomalous data points.

The n neighbors (number of neighbors to use by

default for neighbors queries) parameter is used

for tuning the LOF algorithm by the optimization

step.

3.5. Optimization

The performance of the previously presented pre-

processing and anomaly detection algorithms can

be significantly influenced by the selection of

appropriate hyperparameters. Thus, in order to

avoid manual tuning, an automatic optimization

approach is adopted. Given a model with a cor-

responding set of hyperparameters, the following

three metrics are considered: Sensitivity – also

known as the true positive rate or recall, sensitivity

is the proportion of actual anomalous cases that



3177Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

are correctly identified by the model as anoma-

lous; Specificity – the proportion of actual normal

samples that are correctly identified by the model

as normal; Inference time – this is measured as

the time elapsed from pre-processing to when the

model produces a binary classification, averaged

across all samples in the validation subset.

Due to the multiobjective nature of the above

optimization problem, NSGA-II algorithm (Deb

et al., 2002) is used to iteratively search for Pareto-

optimal configurations. We use the default con-

figuration of NSGA-II, provided by the Optuna

framework (Akiba et al., 2019).

4. Experimental Results

4.1. Setup

4.1.1. The Motor Anomaly Dataset

The dataset is collected using the IoT sensor, de-

scribed in Section 3.1. The sensor is magnetically

attached to a 1 hp three-phase induction motor,

driven by an inverter at a constant speed of 1000

rpm, as illustrated in Figure 2.

Fig. 2.: The IoT sensor attached to an electric

motor setup (left). Short-circuited stator, damaged

bearing and an unbalanced shaft load (right).

Induction motors are among the most common

type of devices in the industrial environment. In

the present work, three distinct faults are repro-

duced to generate anomalous data. The follow-

ing failures are also among the most commonly

encountered in the field (Gundewar and Kane,

2021):

• Unbalanced load (Motor 1) – a small

unbalanced load is placed on the motor

shaft;

• Damaged bearings (Motor 2) – the metal-

lic seal of the bearing is punctured with-

out causing the bearings to stall;

• Stator short circuit (Motor 3) – an inter-

turn short circuit is caused in the stator

winding.

Note that the anomalies above are reproduced

with the aim of being hard to detect during the

operation of a machine. This is because the change

in overall noise and vibration levels is low when

compared to normal data.

The same amount of data is acquired for each of

the three motors and partitioned into the following

subsets:

• Training – 500 consecutive samples of

the normal operation;

• Validation – 500 samples of normal op-

eration and 500 samples of anomalous

data;

• Test – 250 samples of normal operation

and 250 samples of anomalous data.

Thus, considering the three motors, the dataset

is composed of 3750 normal and 2250 anomaly

samples, collected in approximately 30s intervals.

The dataset is available upon request.

4.1.2. Multi-objective Optimization

Given an anomaly detection algorithm (OC-SVM,

IF, or LOF) and the Training and Validation sub-

sets, the optimization loop is tasked with find-

ing the best set of hyperparameters that provide

Pareto-optimal solutions to the three conflicting

objectives described in Section 3.5. In order to

provide consistent results in terms of inference

time, all algorithms are evaluated on a single core

of an i5 CPU.

It is worth noting that, differently from the

anomaly detection models, the optimization al-

gorithm can be viewed as supervised training.

This is because the Validation subset contains an

equal amount of normal and anomaly data. The

hyperparameter search space is composed of the

individual parameters described in Sections 3.2,

3.3, and 3.4. The NSGA-II optimizer is given an

evaluation budget of 200 trials and the configu-
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ration closest to the optimal one is tested in the

Test subset. An optimization run consisting of 100

trials is illustrated in Figure 3, the warmer colors

correspond to non-dominated solutions.

Fig. 3.: Trials within an optimization run.

4.2. Results and Discussion

For each of the three anomaly detection algo-

rithms, ten of the best configurations are selected

for evaluation on the Test subset. The selection is

based on proximity to the optimal sensitivity and

specificity. Because of the possibility of overfit-

ting during optimization, this is done in order to

evaluate the overall validity of the proposed ap-

proach, including the multiobjective optimization.

A comparison of the three optimized algorithms

in terms of sensitivity and specificity is presented

in Figure 4. Each dot of the same color represents

one of the best trials, selected during optimization.

Isolation Forest and Local Outlier Factors provide

the best results on this trade-off.

An additional comparison, including validation

subset and inference time, is presented in Table

1. The results indicate that the LOF algorithm

obtains the best average performance in terms

of the three objectives. The best-ranked config-

uration of this algorithm uses FFT with 10 bins

for processing of noise and vibration signals, fol-

lowed by binning using 10 bins and PCA with two

principal components. The anomaly detection is

performed using 200 neighbors. While the above

parameters are unique to this configuration, it is

worth noting that the ten best sets of hyperparam-

Fig. 4.: A comparison of sensitivity and specificity

on the test subset.

eters have some common attributes. First, FFT is

always present, suggesting that WDT transform

does not offer an advantage when combined with

LOF. Second, PCA reduction is always used and

in 8 out of 10 configurations only two principal

components are necessary.

The test subset can be visualized using the op-

timized pre-processing strategy, as illustrated in

Figure 5. Interestingly, Motor 3 has a different

normal signature from motors 1 and 2. This is

probably because the first two motors come from

the same new batch, while the third motor was

previously in operation for approximately a year.

The different clusters formed by the anomaly data

are expected and reflect the different nature of the

anomaly, as described in Section 4.1.1.

5. Conclusion and Future Works

An end-to-end anomaly detection solution is pre-

sented and evaluated. The proposed approach in-

cludes parametrized data preprocessing and di-

mensionality reduction, as well as the selection

of hyperparameters of three evaluated anomaly

detection algorithms: OC-SVM, IF, and LOF.

A new induction motor anomaly dataset is also

introduced. The dataset contains 3750 normal and

2250 anomaly samples, divided into three com-

monly found defects: unbalanced load, damaged

bearings, and stator short circuits. The defects are

implemented in a way that does not significantly

affect the performance of the motors and would be

difficult to spot on a factory floor.
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Table 1.: A summary of the average evaluation results on the validation / test subsets

Algorithm Sensitivity
(%)

Specificity
(%)

Inference time
(ms)

OC-SVM 73.1 / 47.9 63.4 / 36.5 0.43

IF 88.9 / 86.3 61.6 / 67.4 21.40

LOF 90.8 / 77.6 74.5 / 72.1 0.81

Fig. 5.: The test subset using PCA transform.

The experimental results suggest that LOF is

a promising algorithm for future evaluation in a

real-world scenario, considering sensitivity, speci-

ficity, and inference time metrics.

Future endeavors could explore several direc-

tions, such as the evaluation of an ensemble of

models to reduce overfitting observed during op-

timization. Deep learning models, such as VAEs

should also be evaluated using the proposed multi-

objective approach. Finally, we intend to increase

the diversity and size of the dataset with additional

real-world machines.
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