Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023) Edited by Mário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio ©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore. doi: 10.3850/978-981-18-8071-1_P572-cd

Computing Upper Probabilities of Failure Using Optimization Algorithms Together with Reweighting and Importance Sampling

Thomas Fetz

Unit of Engineering Mathematics, University of Innsbruck, Austria. E-mail: Thomas.Fetz@uibk.ac.at

Michael Oberguggenberger

Unit of Engineering Mathematics, University of Innsbruck, Austria. E-mail: Michael.Oberguggenberger@uibk.ac.at

The presentation addresses efficient computation of the upper probability of failure of engineering structures, when the uncertainty is modelled by a family of probability densities. We develop an algorithm significantly reducing the sample sizes required in the optimization algorithm by adopting a recursive importance sampling scheme.

Keywords: Upper probability, global optimization, importance sampling, reweighting, imprecise probability.

1. Parametrized and Upper Probabilities

Let $\{X_t\}_{t\in\mathcal{T}}$ be a family of multivariate random variables $X_t: \Omega \to D \subseteq \mathbb{R}^{d_1}$ with corresponding density functions $f_t: D \to \mathbb{R}$ which are parametrized by $t = (\tau_1, \dots, \tau_{d_2}) \in \mathcal{T}$. Further let $h: D \to \{0, 1\}$ be an indicator function on Dwhere h(x) = 1 means failure and 0 no failure. Then the probability of failure depending on tis $p(t) = P(h(X_t) = 1) = \int_D h(x) f_t(x) \, dx$ and the upper probability of failure \bar{p} is obtained by solving the global optimization problem $\bar{p} = \max_{t\in\mathcal{T}} p(t)$. To explain the situation we start with a numerical example.

2. Numerical Example

We consider the re-calculation of the reliability of a part of an airplane. The corresponding FEmodel has $4.7 \cdot 10^6$ degrees of freedom and needs 48 different input parameters. Only the two most decisive input parameters $x = (x_1, x_2)$ are taken into account which are the Young's moduli of two metal components. The output of the FEcomputations is the value of the above indicator function h in some complementary components.

The uncertainty about the values x_1 and x_2 is modelled by a family of two-dimensional random variables $\{X_t\}_{t\in\mathcal{T}}$ with $X_t \sim \mathcal{N}(\mu(t), \Sigma(t))$ parametrized by $t = (\varphi, \rho)$. The means $\mu(t)$ may vary on a disc of radius r = 2 GPa and midpoint (m,m) with m = 70 GPa. Since for upper probabilities the boundary of the disc is relevant we consider only the circle

$$\mu(t) = \mu(\varphi, \rho) = 2 \cdot \begin{bmatrix} \cos(\varphi) \\ \sin(\varphi) \end{bmatrix} + \begin{bmatrix} m \\ m \end{bmatrix}, \, \varphi \in [0, 2\pi].$$

The coefficient of correlation varies in an interval, $t_2 = \rho \in [0, 0.8]$, and the coefficient of variation $\nu = 6.5\%$ is assumed to be deterministic. This leads to a parametrization of the covariance matrix

$$\Sigma(t) = \Sigma(\varphi, \rho) = \begin{bmatrix} \sigma_1(\varphi)^2 & \sigma_1(\varphi)\sigma_2(\varphi)\rho \\ \sigma_1(\varphi)\sigma_2(\varphi)\rho & \sigma_2(\varphi)^2 \end{bmatrix}$$
with $\sigma_2(\varphi) = uu_2(\varphi)$

with $\sigma_i(\varphi) = \nu \mu_i(\varphi)$.

3. Estimating p(t) and Their Derivatives

An optimization algorithm for obtaining upper probabilities needs a sequence of parameter values t_1, \ldots, t_m and their probabilities (function values) $p(t_1), \ldots, p(t_m)$. To estimate these probabilities $p(t_i)$ by Monte Carlo simulations it is crucial that for all t_k the simulations are based on the same single set $\omega = \{\omega_1, \ldots, \omega_N\}$ of N random numbers, see Troffaes et al. (2018). These random numbers are then transformed to sets $R_{\omega,t_k} = \{r_1, \ldots, r_N\}$ of sample points distributed according to densities f_{t_k} as for the estimates needed. For parametrized Gaussian distributions it means starting from random numbers $\omega_i \sim \mathcal{N}(0, I)$ and transforming to sample points $r_i(t) \sim \mathcal{N}(\mu(t), \Sigma(t))$ by $r_i(t) = \mu(t) + C(t)\omega_k$ with Cholesky factor C(t) of $\Sigma(t)$.

Estimating $p(t_k) \approx \frac{1}{|R_{\omega,t_k}|} \sum_{r \in R_{\omega,t_k}} h(r)$ by Monte Carlo simulation independently for all $k = 1, \ldots, m$ would lead to mN evaluations of function h. For reducing this high computational effort it is important for an estimate of $p(t_n)$ in step nof optimization to re-use h(r) and sample points r in sets R_{ω,t_k} from previous steps k < n. We use reweighting or importance sampling as in Fetz (2017) and Owen (2018), but here on each set of a partition $D = D_1^n \cap \ldots \cap D_n^n$:

$$p(t_n) = \sum_{k=1}^n \int_{D_k^n} h(x) \frac{f_{t_n}(x)}{f_{t_k}(x)} f_{t_k}(x) \, \mathrm{d}x$$
$$\approx \sum_{k=1}^n \frac{1}{|R_{\omega,t_k}^n|} \sum_{r \in R_{\omega,t_k}^n} h(r) \frac{f_{t_n}(r)}{f_{t_k}(r)} =: p_{\mathcal{R}_\omega^n}(t_n)$$

where $R_{\omega,t_k}^n = R_{\omega,t_k} \cap D_k^n$ is the set R_{ω,t_k} of sample points restricted to the set D_k^n of the current partition and \mathcal{R}_{ω}^n the set $\{R_{\omega,t_1}^n, \ldots, R_{\omega,t_n}^n\}$ of all samples considered in step n. The expensive h(r) is evaluated for $r \in R_{\omega,t_n}^n$ only, all other h(r) are already known from the steps before. The ratios between the original density f_{t_n} and the densities f_{t_k} used instead are the importance sampling ratios which should not be too large (Owen (2018)), because large ratios mean fewer sample points in a considered area leading to less reliable estimates. Taking this into account we define

$$D_k^n = \{ x \in D : f_{t_k}(x) \ge \max_{j \le n, j \ne k} f_{t_j}(x) \}.$$

We do not have to know D_k^n in detail. It is sufficient to know the sets R_{ω,t_k}^n of sample points r keeping only these r where $f_{t_k}(r) > f_{t_j}(r)$, $j = 1, \ldots, n, j \neq k$. We generate such sets recursively for n > 1 setting $R_{\omega,t_1}^1 = R_{\omega,t_1}$ and

$$R_{\omega,t_n}^n = \{ r \in R_{\omega,t_n} : f_{t_n}(r) > \max_{k < n} c_k^{n-1} f_{t_k}(r) \}$$

for the newest and updating all previous (k < n):

$$R_{\omega,t_k}^n = \{ r \in R_{\omega,t_k}^{n-1} \colon c_k^{n-1} f_{t_k}(r) > f_{t_n}(r) \}.$$

In addition we may use factors c_k^{n-1} to be more tolerant allowing lower densities to get fewer new sample points. These factors are also recursively defined as $c_k^n = c_n c_k^{n-1}$ where the cumulative multiplications ensure that $R_{\omega,t_k}^n \subseteq \cdots \subseteq R_{\omega,t_k}^{k-1}$. Further we may go one step back in the recursion if $|R^n_{\omega,t_n}|$ is less than some percentage q of N.

For the computation of the *i*th partial derivative at t_n needed in the optimization algorithm we use $(p_{\mathcal{R}^n_\omega}(t_n + h^{(i)}) - p_{\mathcal{R}^n_\omega}(t_n))/h_i^{(i)}, h_j^{(i)} = 10^{-8} \delta_{ij}.$

4. Optimizing and Results

For our optimization problem we choose q =10%, a sequence $c_n = (c_{n-1} - 1)/2 + 1$ with $c_1 = 1.5$ preventing too large tolerances, and $N = 50\,000$. The MATLAB global optimization algorithm needs 2 777 parameter values t_k requiring 218 160 evaluations of h compared to 2 777 N without this new method which re-uses the h(r)from former samples together with good importance sampling ratios on the sets D_k^n of the partition increasing the accuracy of the estimates. In Fig. 1 we show the contour lines of estimates for p (classical and with $p_{\mathcal{R}^n}$). All parameters t_k used in optimization are visualized as dots where the colour/size indicates the sample sizes used (gray: no new samples, red: new samples needed, the greater the dot the more sample points). We obtain the upper probability $\bar{p} = 0.021$ at t = (2.438, 0).

Fig. 1. Contour lines of estimates of p and points t_k .

References

- Fetz, T. (2017). Efficient computation of upper probabilities of failure. In C. Bucher, B. R. Ellingwood, and D. M. Frangopol (Eds.), *12th Int. Conference on Structural Safety and Reliability*, pp. 493–502.
- Owen, A. B. (2018). Monte Carlo theory, methods and examples. Url: artowen.su.domains/mc/.
- Troffaes, M. C. M., T. Fetz, and M. Oberguggenberger (2018). Iterative importance sampling for estimating expectation bounds under partial probability specifications. In M. De Angelis (Ed.), *Proc. of the 8th Int. Workshop on Reliable Engineering Computing*, pp. 147–154. Liverpool University Press.