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The presentation addresses efficient computation of the upper probability of failure of engineering structures, when
the uncertainty is modelled by a family of probability densities. We develop an algorithm significantly reducing the
sample sizes required in the optimization algorithm by adopting a recursive importance sampling scheme.
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1. Parametrized and Upper Probabilities

Let {X;};c7 be a family of multivariate random
variables X; : Q@ — D C R% with correspond-
ing density functions f; : D — R which are
parametrized by ¢t = (71,...,74,) € T. Further
let h : D — {0,1} be an indicator function on D
where h(z) = 1 means failure and 0 no failure.
Then the probability of failure depending on ¢
is p(t) = P(h(Xy) = 1) = [ph(z)fi(z) dx
and the upper probability of failure p is ob-
tained by solving the global optimization problem
p = maxge7 p(t). To explain the situation we
start with a numerical example.

2. Numerical Example

We consider the re-calculation of the reliability
of a part of an airplane. The corresponding FE-
model has 4.7 - 10 degrees of freedom and needs
48 different input parameters. Only the two most
decisive input parameters x = (1, x2) are taken
into account which are the Young’s moduli of
two metal components. The output of the FE-
computations is the value of the above indicator
function A in some complementary components.
The uncertainty about the values z; and x5 is
modelled by a family of two-dimensional random
variables {X;}ier with Xy ~ N(u(t), (1))
parametrized by ¢t = (¢, p). The means y(t) may
vary on a disc of radius = 2 GPa and midpoint

(m,m) with m = 70 GPa. Since for upper prob-
abilities the boundary of the disc is relevant we
consider only the circle
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The coefficient of correlation varies in an interval,
to = p € [0,0.8], and the coefficient of variation
v = 6.5% is assumed to be deterministic. This
leads to a parametrization of the covariance matrix
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with o;(¢) = v (p).

Ul(w)az(w)p]

E(t) = E(‘Pvﬂ) = { ‘72(80)2

3. Estimating p(t¢) and Their Derivatives

An optimization algorithm for obtaining upper
probabilities needs a sequence of parameter val-
ues ti,...,t, and their probabilities (function
values) p(t1),...,p(tm). To estimate these prob-
abilities p(¢;) by Monte Carlo simulations it is
crucial that for all ¢; the simulations are based
on the same single set w = {wi,...,wn} of
N random numbers, see Troffaes et al. (2018).
These random numbers are then transformed to
sets R+, = {ri,...,rn} of sample points
distributed according to densities f, as for the
estimates needed. For parametrized Gaussian dis-
tributions it means starting from random numbers
w; ~ N(0, ) and transforming to sample points
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ri(t) ~ N (u(t), X(8) by ri(t) = p(t) + C(t)wr
with Cholesky factor C'(¢t) of X(¢).

Estimating p(t;) =~ m ZreRw,tkh(T) by
Monte Carlo simulation independently for all £ =
1,...,m would lead to m/\N evaluations of func-
tion h. For reducing this high computational effort
it is important for an estimate of p(t,,) in step n
of optimization to re-use h(r) and sample points
r in sets R, ;, from previous steps k& < n. We
use reweighting or importance sampling as in Fetz
(2017) and Owen (2018), but here on each set of a
partitionD=D} n...Nn Dy
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where R} ;, = Ry, ¢, NDy is the set Ry, ¢, of sam-
ple points restricted to the set D} of the current
partition and R} the set { R} , ,..., R, } of all
samples considered in step n. The expensive h(r)
is evaluated for 7 € R, , only, all other h(r) are
already known from the steps before. The ratios
between the original density f; and the densities
ft, used instead are the importance sampling ra-
tios which should not be too large (Owen (2018)),
because large ratios mean fewer sample points in a
considered area leading to less reliable estimates.
Taking this into account we define
Dp = {a €D fi(w) > max fi,(x)}.

We do not have to know D7 in detail. It is suf-
ficient to know the sets R, —of sample points
r keeping only these r where f, (1) > fi. (7).
j = 1,...,n, j # k. We generate such sets
recursively for n > 1 setting R}, ; = R.,, and

! ftk (T) }
for the newest and updating all previous (k < n):

RY . ={re R fu.(r) > fr,(r)}.

In addition we may use factors cj;
tolerant allowing lower densities to get fewer new
sample points. These factors are also recursively
! where the cumulative

Ry, ={r€ Ry, : ft,(r) >maxc]”~
o ’ k<n

! to be more

defined as ¢} = cucp”

multiplications ensure that R}, ;, C Rw -
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Further we may go one step back in the recursion
if | R7, ;| is less than some percentage q of N.
For the computation of the i" partial derivative
at ¢,, needed in the optimization algorithm we use
(pry (tn + 1) = pry (tn)) /A, S =105 ;5.

4. Optimizing and Results

For our optimization problem we choose ¢ =
10%, a sequence ¢, = (c¢p—1 — 1)/2 + 1 with
c; = 1.5 preventing too large tolerances, and
N = 50000. The MATLAB global optimization
algorithm needs 2 777 parameter values ¢;, requir-
ing 218 160 evaluations of h compared to 2 777 N
without this new method which re-uses the h(r)
from former samples together with good impor-
tance sampling ratios on the sets D}’ of the par-
tition increasing the accuracy of the estimates. In
Fig. 1 we show the contour lines of estimates for

p (classical and with pg» ). All parameters ¢, used

in optimization are visualized as dots where the
colour/size indicates the sample sizes used (gray:
no new samples, red: new samples needed, the
greater the dot the more sample points). We obtain
the upper probability p=0.021 at ¢t =(2.438,0).
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Fig. 1. Contour lines of estimates of p and points .
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