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The presentation addresses efficient computation of the upper probability of failure of engineering structures, when
the uncertainty is modelled by a family of probability densities. We develop an algorithm significantly reducing the
sample sizes required in the optimization algorithm by adopting a recursive importance sampling scheme.
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1. Parametrized and Upper Probabilities

Let {Xt}t∈T be a family of multivariate random

variables Xt : Ω → D ⊆ R
d1 with correspond-

ing density functions ft : D → R which are

parametrized by t = (τ1, . . . , τd2) ∈ T . Further

let h : D → {0, 1} be an indicator function on D

where h(x) = 1 means failure and 0 no failure.

Then the probability of failure depending on t

is p(t) = P (h(Xt) = 1) =
∫
D
h(x)ft(x) dx

and the upper probability of failure p̄ is ob-

tained by solving the global optimization problem

p̄ = maxt∈T p(t). To explain the situation we

start with a numerical example.

2. Numerical Example

We consider the re-calculation of the reliability

of a part of an airplane. The corresponding FE-

model has 4.7 · 106 degrees of freedom and needs

48 different input parameters. Only the two most

decisive input parameters x = (x1, x2) are taken

into account which are the Young’s moduli of

two metal components. The output of the FE-

computations is the value of the above indicator

function h in some complementary components.

The uncertainty about the values x1 and x2 is

modelled by a family of two-dimensional random

variables {Xt}t∈T with Xt ∼ N (μ(t),Σ(t))

parametrized by t = (ϕ, ρ). The means μ(t) may

vary on a disc of radius r = 2 GPa and midpoint

(m,m) with m = 70 GPa. Since for upper prob-

abilities the boundary of the disc is relevant we

consider only the circle

μ(t) = μ(ϕ, ρ) = 2·
[
cos(ϕ)

sin(ϕ)

]
+

[
m

m

]
, ϕ ∈ [0, 2π].

The coefficient of correlation varies in an interval,

t2 = ρ ∈ [0, 0.8], and the coefficient of variation

ν = 6.5% is assumed to be deterministic. This

leads to a parametrization of the covariance matrix

Σ(t) = Σ(ϕ, ρ) =

[
σ1(ϕ)

2 σ1(ϕ)σ2(ϕ)ρ

σ1(ϕ)σ2(ϕ)ρ σ2(ϕ)
2

]

with σi(ϕ) = νμi(ϕ).

3. Estimating p(t) and Their Derivatives

An optimization algorithm for obtaining upper

probabilities needs a sequence of parameter val-

ues t1, . . . , tm and their probabilities (function

values) p(t1), . . . , p(tm). To estimate these prob-

abilities p(ti) by Monte Carlo simulations it is

crucial that for all tk the simulations are based

on the same single set ω = {ω1, . . . , ωN} of

N random numbers, see Troffaes et al. (2018).

These random numbers are then transformed to

sets Rω,tk = {r1, . . . , rN} of sample points

distributed according to densities ftk as for the

estimates needed. For parametrized Gaussian dis-

tributions it means starting from random numbers

ωi ∼ N (0, I) and transforming to sample points

2449



2450 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

ri(t) ∼ N (μ(t),Σ(t)) by ri(t) = μ(t) + C(t)ωk

with Cholesky factor C(t) of Σ(t).

Estimating p(tk) ≈ 1
|Rω,tk

|
∑

r∈Rω,tk
h(r) by

Monte Carlo simulation independently for all k =

1, . . . ,m would lead to mN evaluations of func-

tion h. For reducing this high computational effort

it is important for an estimate of p(tn) in step n

of optimization to re-use h(r) and sample points

r in sets Rω,tk from previous steps k < n. We

use reweighting or importance sampling as in Fetz

(2017) and Owen (2018), but here on each set of a

partitionD=Dn
1 ∩ . . . ∩Dn

n:

p(tn) =

n∑
k=1

∫
Dn

k

h(x)
ftn(x)

ftk(x)
ftk(x) dx

≈
n∑

k=1

1

|Rn
ω,tk

|
∑
r∈Rn

ω,tk

h(r)
ftn(r)

ftk(r)
=: pRn

ω
(tn)

where Rn
ω,tk

= Rω,tk∩Dn
k is the set Rω,tk of sam-

ple points restricted to the set Dn
k of the current

partition and Rn
ω the set {Rn

ω,t1 , . . . , R
n
ω,tn} of all

samples considered in step n. The expensive h(r)

is evaluated for r ∈ Rn
ω,tn only, all other h(r) are

already known from the steps before. The ratios

between the original density ftn and the densities

ftk used instead are the importance sampling ra-

tios which should not be too large (Owen (2018)),

because large ratios mean fewer sample points in a

considered area leading to less reliable estimates.

Taking this into account we define

Dn
k = {x ∈ D : ftk(x) ≥ max

j≤n,j �=k
ftj (x)}.

We do not have to know Dn
k in detail. It is suf-

ficient to know the sets Rn
ω,tk

of sample points

r keeping only these r where ftk(r) > ftj (r),

j = 1, . . . , n, j 	= k. We generate such sets

recursively for n > 1 setting R1
ω,t1 = Rω,t1 and

Rn
ω,tn = {r ∈ Rω,tn : ftn(r) >max

k<n
cn−1
k ftk(r)}

for the newest and updating all previous (k < n):

Rn
ω,tk

= {r ∈ Rn−1
ω,tk

: cn−1
k ftk(r) > ftn(r)}.

In addition we may use factors cn−1
k to be more

tolerant allowing lower densities to get fewer new

sample points. These factors are also recursively

defined as cnk = cnc
n−1
k where the cumulative

multiplications ensure that Rn
ω,tk

⊆ · · · ⊆ Rk−1
ω,tk

.

Further we may go one step back in the recursion

if |Rn
ω,tn | is less than some percentage q of N .

For the computation of the ith partial derivative

at tn needed in the optimization algorithm we use

(pRn
ω
(tn+h(i))−pRn

ω
(tn))/h

(i)
i , h

(i)
j =10−8 δij .

4. Optimizing and Results

For our optimization problem we choose q =

10%, a sequence cn = (cn−1 − 1)/2 + 1 with

c1 = 1.5 preventing too large tolerances, and

N = 50 000. The MATLAB global optimization

algorithm needs 2 777 parameter values tk requir-

ing 218 160 evaluations of h compared to 2 777N

without this new method which re-uses the h(r)

from former samples together with good impor-

tance sampling ratios on the sets Dn
k of the par-

tition increasing the accuracy of the estimates. In

Fig. 1 we show the contour lines of estimates for

p (classical and with pRn
ω

). All parameters tk used

in optimization are visualized as dots where the

colour/size indicates the sample sizes used (gray:

no new samples, red: new samples needed, the

greater the dot the more sample points). We obtain

the upper probability p̄=0.021 at t=(2.438, 0).

classical method
new method
tk, no new sample

tk, new sample needed

Fig. 1. Contour lines of estimates of p and points tk.
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