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This study investigates the question of the evaluation of a heuristic condition-based maintenance policy applied to
a distributed multi-unit system. In particular, the system is composed of many units which function and degrade
independently. We call it distributed since the system’s total output is the sum of the individual output of each unit,
where the failure of one unit has no impact on the functioning state of other units (i.e., no series/parallel structure).
Taking into account the large-scale nature of the problem, which consists of a large number of units, is crucial
because a good maintenance policy should coordinate the decisions at the scale of the system. Said differently,
maintenance decisions cannot be taken independently unit-by-unit for the following reasons. First, the maintenance
resource is limited and should be wisely allocated across the system. Second, as deploying on-site a maintenance
crew is expensive, a good maintenance policy should also try to limit the number of deployments and group
maintenance interventions. A condition-based maintenance policy relies on condition monitoring information, which
we assume to be imperfect. We model this imperfection by assuming that remote sensors inaccurately estimate the
true degradation state of the units. The decision-maker should then choose, at each time step, whether a maintenance
operation or an inspection must be performed based on the information one has collected. We formulate the problem
as a partially observable Markov decision process (POMDP). However, due to the curse of dimensionality, it cannot
be solved via well-known approximate dynamic techniques. We then propose a heuristic algorithm based on a
decomposition of the problem. The contribution of this work is to propose a framework to evaluate and validate
this algorithm. We first validate the approach on a realistic-sized instance and show that the obtained policy has the
expected properties (in terms of structure or value of information for different qualities of condition monitoring).
Second, we validate the design of our procedure by showing that in a variety of scenarios, our heuristic performs
better than its simpler (and more naive) alternatives.

Keywords: condition-based maintenance, partially observable Markov decision process (POMDP), large-scale multi-
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1. Introduction

A large variety of industrial systems are often or-

ganized as a fleet, composed of many independent

units that function and degrade over time. To-

gether, those items contribute to the whole fleet’s

global service level. For example, wind turbines

in large offshore wind farms, trains, or distributed

data centers are complex systems organized as

fleets. However, as they degrade over time, those

items will eventually fail if they are not adequately

maintained, affecting the fleet’s total revenue or

service level. Thus, it is essential to implement a

maintenance policy consisting of deciding on the

inspection of the material and the maintenance op-

erations. For a couple of decades, condition-based

maintenance (CBM) strategies have proven to be

effective, providing better solutions with respect

to the overall cost or availability of fleet units.

Essentially, this family of maintenance policies

leverages the information collected via condition

monitoring (remote sensors or human inspections)

to infer the degradation state of the monitored item

and schedule the next maintenance operation as

wisely as possible. In such context, the general

968



969Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

state of mind is often to balance two concurrent

goals: i) prevent unexpected failures of degraded

items by scheduling preventive maintenance inter-

ventions, while at the same time ii) save costs by

scheduling as few interventions as necessary and

use the full lifetime of the items (Alaswad (2017)).

This work is inspired by Yildirim (2017), which

focuses on optimizing the CBM policy of turbines

in an offshore wind farm. In particular, the possi-

bility to group several maintenance interventions

to save costs (e.g., setup cost, deployment cost),

which is a form of opportunistic maintenance, is

a crucial element to optimize since deploying a

maintenance crew on-site is very expensive and

requires a specific material. The authors propose

a heuristic mixed-integer linear program (MILP)

to optimize the maintenance decisions with a

rolling horizon approach, where condition moni-

toring coming from remote sensors is used at each

new re-optimization. In this study, we propose to

go one step further and explore a model where

the condition monitoring is imperfect, meaning

that the decision-maker does not have access to

the exact degradation states when making main-

tenance decisions. In reality, such an approach is

motivated by the fact that many remote sensors

only partially capture the data required to infer

the degradation state. Moreover, with the devel-

opment of monitoring technologies, many com-

panies are now considering implementing CBM

policies. What we observed from our interactions

is that they are often concerned by one of the fol-

lowing questions: 1) What if the sensors are not as

accurate as guaranteed by the manufacturer? How

could failing sensors affect the performance of the

overall CBM policy? 2) What are the costs and

benefits of implementing CBM? If several levels

of condition monitoring systems (i.e., character-

ized by their monitoring accuracy) are available

at different costs, how can we choose the ”best”

one? As those questions are related, we propose

investigating a CBM optimization framework to

manage a fleet system with imperfect monitoring

in this article. This study then allows us to com-

pute the value of information (VoI) of a given

monitoring technology, defined in Memarzadeh

(2016) as ”the maximum cost a decision-maker

is willing to pay for getting this information” and

compare different alternatives.

To do so, we propose to model the problem

as a partially observable Markov decision pro-

cess (POMDP). It is an interesting framework that

allows modeling a sequential decision-making

problem based on some partial knowledge about

the system’s state. For us, it consists of finding

the maintenance policy (scheduling inspections

and maintenance operations based on imperfect

knowledge about the degradation state of each

item in the fleet) that minimizes the total expected

cost. POMDPs were first introduced by Sondik

(1971), but much progress have been made in the

solving algorithms in the last 20 years, explaining

why they are applied more and more to indus-

trial use cases, e.g., Papakonstantinou (2014a),

Papakonstantinou (2014b). Solving POMDPs is

a complex problem (see Kaelbling (1998)), and

exact algorithms, like Cassandra (2013), quickly

suffer from the curse of dimensionality and his-

tory. However, recent advances in approximate

dynamic programming algorithms made it possi-

ble to solve with good precision much larger prob-

lems (in terms of size of the finite state, action,

and observation spaces); among those state-of-

the-art solvers, we can cite, for example, SARSOP

(Kurniawati (2008)) or PERSEUS (Spaan (2005)).

Nevertheless, even the most advanced approx-

imate algorithms cannot handle more than tens

of thousands of states in a reasonable amount

of time. For our applications, we would like to

be capable of handling fleets of around a hun-

dred units. Considering that each item can be in

five degradation states, this would still result in

a huge state space of size 5100 ∼ 1035. The

same reasoning would also apply to the action and

observation spaces. Moreover, in order to make

cost-effective maintenance decisions, leveraging,

for example, the opportunities offered by oppor-

tunistic maintenance, maintenance decisions can-

not be taken independently unit-by-unit. This eco-

nomic dependency, further reinforced by a limited

maintenance resource, forces us to consider main-

tenance policies where interventions have some

degree of coordination. To address this issue, we

propose a heuristic policy with the advantage of
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efficiently scaling up to large-scale systems. The

term ”heuristic” means that we have no math-

ematical guarantee that the result will be close

to the optimal solution of the original problem,

i.e., here the optimal maintenance policy. The pro-

posed approach consists of a hybrid optimization

framework mixing dynamic programming (DP)

and integer linear programming (ILP). In this arti-

cle, we will, in particular, focus on validating such

an approach. We will show that, even if we do

not have any guarantee of performance, various

numerical tests still indicate that it is an inter-

esting approach providing valuable results within

reasonable computation time.

2. Problem description

2.1. Large-scale fleet system

We start first by introducing in more detail what

we call a fleet system. In the rest of the paper,

we consider that a fleet is an industrial system

composed of many independent items. Each item

(or unit) may be viewed as a multi-component

sub-system, but this is outside the scope of our

study. The most important characteristic is that

each item functions and degrades independently

of other items in the fleet. This is a reasonable

assumption for many systems, such as trains or

wind turbines. Indeed, external factors may simul-

taneously affect the degradation level of several

items (e.g., weather conditions, load, and state

of the rail infrastructure). However, here we will

neglect this second-order aspect (which could be

considered in later extensions of this work).

Items progressively degrade following a partic-

ular degradation process and will eventually fail

if no preventive maintenance operation has been

carried out in time. A failed item is a problem for

the management of the fleet since it corresponds

to lost profit (modeled as an opportunity cost)

or, more generally, a degradation of the level of

service (too many failed trains in a fleet are prob-

lematic because it forces the company to cancel

some journeys and refund affected passengers).

As explained in the introduction, the management

challenge of such a fleet comes from two main fac-

tors: 1) the combinatorial nature of the problem,

which grows exponentially with the number of

items in the fleet, and 2) the fact that maintenance

decisions need to be coordinated at the scale of the

whole fleet.

2.2. Modeling the problem as a POMDP

In a previous paper (Roux (2022)), we modeled

the maintenance problem of a single-item system

as a POMDP. The goal was to study the impact of

different condition monitoring accuracies on the

optimized maintenance policy and its associated

value. This work is a natural extension where

we apply the POMDP model to a larger system

composed of many units. Therefore, the notation

is very similar, and we invite the reader to have a

look at this previous paper for more details on the

1-item POMDP.

The set of items is noted as I . For the sake of

simplicity, we assume that all items are identical

(e.g., same degradation process, maintenance cost,

contribution to the fleet’s performance), but this

is not a restrictive assumption, and this could

easily be generalized. The degradation state of

item i ∈ I at time t is noted si,t ∈ Ŝ =

{S1, S2, S3, S4, F}, where F is the unique failure

state.

At each time step, one action ai,t ∈ Â =

{NA,PM,CM, I} must be selected by the

decision-maker for each item:

• NA corresponds to the default action of

doing nothing

• PM is a preventive maintenance opera-

tion, which should be performed on a

degraded yet still functioning item to put

it back to the as-good-as-new state S1

• CM is a corrective maintenance opera-

tion to repair a failed item

• I corresponds to a perfect inspection of

the item; the decision-maker can pay to

improve the knowledge about the item

state and perfectly access to si,t, which

complements the imperfect remote sen-

sors information.

A cost is associated with each individual ac-

tion, corresponding to the cost of performing pre-

ventive/corrective maintenance or an inspection

(cPM , cCM , cI ). Regarding the remote condition
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monitoring system, we assume that each item

is equipped with a sensor providing imperfect

monitoring data. Periodically, every K time steps

(called the observation period), an observation oi,t
can be used to estimate the state si,t of the item.

Eventually, we assume that in that model, failures

are self-announcing, meaning that if an item fails,

it will be immediately known by the decision-

maker without any delay or ambiguity.

For the entire fleet, states are modeled by the

finite set S containing all the combinations of in-

dividual degradation states of the items; the same

applies to action and observation space, leaving

us with the generic notation st ∈ S , at ∈ A and

ot ∈ O as state, action, and observation at time t

for the whole fleet.

We formulate the problem as the following op-

timization program:

min
π∈Π

E

[+∞∑
t=0

γt · c(st, at)
]

(1)

where at = π(bt), with bt being the belief about

the system state at time t; bt[s] represents the

probability that the system is in state s ∈ S
given all the information the decision-maker has

accumulated so far. The cost c(st, at) when action

at is selected is the sum of the individual costs

resulting from the maintenance operations on the

items (i.e., cost of preventive or corrective main-

tenance, cost of inspection or opportunity cost

from a failed item) plus a deployment cost that is

paid when we have to deploy a maintenance crew

to perform at least one intervention on the fleet

(i.e., paid as soon as some other action than do

noting is selected). The discount factor γ enables

us to sum the costs over an infinite time horizon.

Finally, a resource constraint limits the number of

simultaneous interventions that can be scheduled

at a given time step, limiting in practice the actions

to a subset of feasible actions Ã ⊂ A.

3. Heuristic solving approach

Because applying traditional POMDP solving al-

gorithms is impossible for such a large problem,

we adopt a heuristic approach. The idea is to use

the Q-values computed from solving the much

simpler 1-item problem as a proxy to design a

meaningful cost function for an ILP.

3.1. Modified 1-item POMDP

We first consider the same problem as previously

explained but now assume it has only 1 item.

In that situation, the resource constraint becomes

non-limiting and thus can be ignored. If we ap-

ply a point-based value iteration algorithm (e.g.,

SARSOP, Kurniawati (2008) or PERSEUS, Spaan

(2005)), we can compute by approximate dynamic

programming the Q-values Q∗(s, a). They give

us the approximate, but with good precision, ex-

pected cost corresponding to taking action a when

the item is in state s, and then, following the

optimal 1-item maintenance policy.

The only thing we need to decide is how to

determine the allocated fraction of the deployment

cost, which is by nature a global cost (i.e., difficult

to attribute to a particular unit in case several

interventions have been opportunistically grouped

together). Here, with only 1 item in the system, it

means that we must pay the deployment cost each

time we intervene on the item, whereas in reality,

in a multi-item system, a cost-effective mainte-

nance strategy would try to group maintenance

interventions in order to save deployment costs.

In fact, this cost is essential because its value

strongly impacts how likely we are to schedule

inspections: the more expensive the deployment

cost, the less likely we are willing to schedule

inspections, because they are more costly and thus

less worthwile.

3.1.1. Zero deployment cost

The first naive idea would be to neglect the de-

ployment cost and compute the Q-values for a

1-item problem with no deployment cost at all.

By doing so, we underestimate the cost of main-

tenance interventions on the unit, but it has the

advantage of being easy to compute.

3.1.2. Full deployment cost

The second simplistic idea consists of the opposite

of allocating the full deployment cost in the com-

putation of the Q-values. In that case, it is clear

that we tend to overestimate the cost of mainte-



972 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

nance interventions, but it is still straightforward

to compute.

3.1.3. Proposed method

The proposed method we will test in the next

section is an intermediate approach. It consists

of modeling the interaction between a unit i and

the rest of the fleet. Here, the entity ”the rest of

the fleet” is not finely modeled; we only consider

its aggregated behavior. In the end, it is all that

matters because this is all we need to know to

schedule interventions for the unit i: if too much

resource is used by the rest of the fleet, the con-

sidered item cannot schedule any intervention;

but similarly, if the rest of the fleet uses some

resource, unit i and the rest of the fleet can now

”share” the deployment cost, thus encouraging

group interventions to save deployment cost.

This model enables us to compute the Q-values

of a 1-item POMDP which is supposed to approx-

imate the interaction between a particular unit and

the rest of the fleet. Heuristically, the underlying

idea is that it leads to modeling more precisely the

maintenance resource limitation and leveraging

the opportunistic maintenance.

3.2. An ILP to schedule operations at the
scale of the fleet

Now that we have presented the three alternatives

for the modified 1-item POMDP, we show how we

intend to use it to produce a maintenance policy at

the fleet level. To do so, we formulate a sequential

optimization framework where we solve an ILP

at the beginning of each observation epoch, i.e.,

every K time steps. We use this optimization

program to schedule the interventions to be per-

formed for the next K time steps. Such a choice

of a re-optimization period is convenient because

it corresponds to the observation period, meaning

that we can produce a maintenance schedule that

leverages the monitoring information. The way of

proceeding is the following:

(1) At the beginning of an observation epoch,

we collect the imperfect observation ot and

update the belief state bt;

(2) The ILP is solved, providing a maintenance

schedule for the next K time steps;

(3) We execute the maintenance schedule for the

whole observation epoch, then start the pro-

cess again.

Let:

• xt ∈ {0, 1} be a binary variable indicating

whether we should schedule a deployment at

time t;

• Iw ⊂ I be the subset of items in a working

state at time t = 0;

• If ⊂ I be the subset of items being failed at

time t = 0;

• zIi,t ∈ {0, 1} be a binary variable indicating

whether we should schedule an inspection of

item i at time t;

• zPM
i,t ∈ {0, 1} be a binary variable indicat-

ing whether we should schedule a preventive

maintenance on item i at time t;

• zCM
i,t ∈ {0, 1} be a binary variable indicat-

ing whether we should schedule a corrective

maintenance on item i at time t;

• zNA
i ∈ {0, 1} be a binary variable indicating

whether we should not schedule any interven-

tion during the next K time steps on item i;

• bi be the belief state of item i at time t = 0

after taking into account the observation;

• Q̃I(b, t) (resp. Q̃PM (b, t)) be an estimation

of all the expected future costs associated to

an item initially described by the belief b if

we schedule an inspection (resp. preventive

maintenance) at time t and then follow the

optimal policy;

• Q̃CM (t) be an estimation of all the expected

future costs associated to an item that is ini-

tially failed if we schedule corrective mainte-

nance at time t and then follow the optimal

policy;

• Q̃NA(b) be an estimation of all the expected

future costs associated to an item initially de-

scribed by the belief b if we schedule to do

nothing on the next K time steps and then

follow the optimal policy;

• ra be the resource required for intervention

a ∈ Â;

• R be the total maintenance resource available

at each time step.
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The ILP to solve at each observation epoch is

the following:

min
x,z

K−1∑
t=0

(
cdeploy · xt + uI

t + uPM
t + uCM

t

)

+ uNA

s.t. uI
t =

∑
i∈Iw

Q̃I(bi, t) · zIi,t

uPM
t =

∑
i∈Iw

Q̃PM (bi, t) · zPM
i,t

uCM
t =

∑
i∈If

Q̃CM (t) · zCM
i,t

uNA =
∑
i∈Iw

Q̃NA(bi) · zNA
i

K−1∑
t=0

(
zIi,t + zPM

i,t

)
+ zNA

i = 1, ∀i ∈ Iw

K−1∑
t=0

zCM
i,t = 1, ∀i ∈ If

zai,t ≤ xt, ∀i ∈ I, ∀a ∈ {I, PM,CM}∑
a,i

zai,t · ra ≤ R, ∀t

(2)

4. Numerical results

We performed some numerical analysis to test

the validity of our heuristic procedure. We tested

our method on a fleet composed of 50 items,

and the first promising result is that our ap-

proach can compute and simulate an inspection

and maintenance policy in a reasonable amount

of time (whereas the traditional approach using

approximate dynamic programming is clearly in-

tractable). In this section, we describe the different

tests we performed and describe to what extent

they can, at least partially, contribute to validate

the proposed heuristic method.

4.1. Validation of the iterative procedure

The method we propose relies on an iterative pro-

cedure. As computations go, we can access better

estimations of the aggregated behavior of the ”rest

of the fleet”, thus enabling us to further improve

the computation of our Q-values for the modified

1-item POMDP. We then expect our procedure

to converge towards a low-cost solution (maybe

not the global optimum, but at least some ’local’

minimum). In Fig. 1, we observe that the method

computes better maintenance policies after a few

iterations. Moreover, this is true for different sce-

narios of monitoring performance (i.e., the qual-

ity of the imperfect monitoring observations used

at each observation epoch). From this observa-

tion, we can conclude that our modified 1-item

POMDP is able to capture (maybe partially) the

interaction between a given unit and the rest of

the fleet and that a better model of the aggregated

behavior of the rest of the fleet leads to a better

solution, in terms of total cost.

Fig. 1. Convergence towards a low-cost solution after
a few iterations.

4.2. Value of information

When computing the average cost for different

monitoring performances, we observe that our

method can capture a value of information (VoI),

as defined in Memarzadeh (2016). We observe

in Fig. 2 that the better the condition monitoring

system, the lower the overall maintenance cost.

Even if we still have no guarantee of performance,

this is another indication that our approach is con-

sistent and produces relevant and sound policies.

4.3. Comparison with simpler alternatives

We compare our proposed method, which relies

on the modified 1-item POMDP, with the two
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Fig. 2. Value of information.

much simpler alternatives evoked in sections 3.1.1

and 3.1.2 (i.e., zero and full deployment cost). In

Table 1, we reported the total cost obtained via

simulation for different scenarios of monitoring

accuracy, defined by the conditional probabilities

P(ot|st) that give the probability of receiving ob-

servation ot given that the item is in degradation

state st. It shows that our method systematically

finds a maintenance policy of lower cost com-

pared to the alternatives (and the gap is quite

significant). We can conclude that the model we

proposed for the interaction between a given unit

and the rest of the fleet is relevant to consider in

the sense that, since it leads to better solutions, it

is a reasonable increase in the model complexity

provided its better performance.

5. Conclusion

From this work, we can conclude that validating

a heuristic maintenance policy is not straightfor-

ward. Here, we studied a situation where we as-

sumed we had enough data to perform accurate

optimization and simulations. This assumption

enabled us to use simulations to compare different

policies, but this may not always be possible (e.g.,

for relatively new material with little historical

data). However, without a tractable exact or ap-

proximate (with bounds) algorithm to compute

the optimal solution, evaluating the performance

of a given heuristic optimization framework is

Table 1. Comparison between our proposed method and the

potential simpler alternatives; total cost evaluated via simula-

tions for different settings of monitoring quality.

Monitoring Proposed method Full deploy. Zero deploy.
quality (cost)

no monitoring 22,920 +10.3% +13.9%
monitoring 1 19,090 +8.0% +23.3%
monitoring 2 17,760 +7.6% +26.6%
monitoring 3 17,000 +6.9% +29.5%
monitoring 4 15,830 +4.7% +35.2%
monitoring 5 14,870 +3.4% +41.4%
perfect 13,760 +2.1% +55.8%

challenging.

In this paper, we showed that, even if a thorough

validation relying for example on a gap to the

optimal solution is not possible, there are still

some properties that we can exploit and search

for in the heuristic policy to increase our confi-

dence in the model. We showed using a numer-

ical analysis that our maintenance optimization

method could capture the value of information

of different condition monitoring systems. More-

over, we validated the iterative feature of the pro-

posed procedure by showing that iteration after

iteration, the computed policy converges towards

a low-cost solution (which may, however, only be

a local minimum). Eventually, we illustrated on

many different monitoring settings that the pro-

posed method performs better than the more naive

alternatives we first mentioned, which constitutes

an additional element for validating our heuristic

framework.

This work could be continued and improved

in at least a couple of future directions. First,

one could compare the proposed method with the

current strategies applied to such systems, which

would constitute an interesting reference bench-

mark. Second, in future work, we would like to

use existing POMDP solvers and run them on

small enough instances, with only a few items so

that it remains reasonably computable, to see the

proximity of our heuristic policy with the optimal

one.
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