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Common cause, or common mode, failures (CCF) are often major contributors in large scale risk analyses of
complex systems, such as nuclear probabilistic safety assessment (PSA). In this paper we discuss two challenges
and limitations of the most widely used approaches regarding CCF quantification based on parametric CCF models.
The first one deals with the time dependent behavior of a system under a staggered testing scheme. We illuminate
differences in modeling and quantification which result from the application of different methods for staggered
testing of components that share common cause failures. We aim at a simple and flexible way of specifying
staggered tests that provides a possibility of a realistic quantification for real-life PSA models. Secondly, we illustrate
conditions for using parametric CCF models and their limitations. From this perspective, we investigate alternative
approaches for characterizing common cause failures. The goal is to increase flexibility for situations where classical
parametric models are unsuitable.
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1. Introduction

Textbook fault tree analysis methods assume that

basic events are independent. This is not true in

many real-life cases. Basic events representing the

same failure mode of symmetrical components,

typically the same component type in redundant

subsystems or trains, belong to the most promi-

nent examples. Probability of a combination of

these basic events occurring at the same time

might be greater than the product of their respec-

tive probabilities. They might fail together be-

cause of a common cause (IAEA (1992); Mosleh

et al. (1988)). Common cause, or common mode,

failures (CCF) are often major contributors in

large scale risk analyses of complex systems, such

as nuclear probabilistic safety assessment (PSA).

A simultaneous failure of several components

by a common cause is typically modeled by a

single event – a Common Cause Failure Event

(CCF Event). Parametric CCF models define fail-

ure probabilities of CCF Events based on their

multiplicity, i.e., how many components fail si-

multaneously. For example, the Multiple Greek

Letters (MGL) or Alpha Factor models Mosleh

and Siu (1987) define the failure probability of

each CCF multiplicity as a fraction of the original

event and these fractions can be calculated from

model parameters. The time dependent behavior

is the ability of the model to consider that the

information about the component status may vary

in time (and thereby affecting the likelihood of a

CCF failure to occur).

The prevailing approach to CCF quantification

uses parametric models. The time dependent be-

havior is either not considered or limited to se-

quential or staggered testing for the Alpha para-

metric model. This paper explores possibilities to

generalize the time dependent behavior and what

benefits this would bring. We will also discuss if

using a more generalized definition of the CCF

probability, rather than a parametric model, could

bring flexibility and resolve some issues with CCF

in current real-life probabilistic safety assessment

models, like the possibility to define several CCF

groups covering the same events.
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2. Background

This section introduces the concept of common

cause failures, time-dependent behavior and dif-

ferent approaches for CCF Event quantification in

presence of staggered testing.

2.1. Common Cause Failures

A standard approach applied across various do-

mains Stott et al. (2010) for representing these

dependencies in fault trees takes four steps. First,

an analyst identifies groups of components and

their failure modes that share common cause fail-

ures. We call a group of basic events that represent

failures of components that possibly share a com-

mon cause a Common Cause Failure Group (CCF

Group). Second, new type of events – Common

Cause Failure Events (CCF Events) – are created

to model combinations of basic event occurrences,

including an independent failure of each basic

event, for components that share common cause

failures. Each CCF Event contains failures of one

or more components that happen of a common

cause. Multiplicity of a CCF Event is the cardi-

nality of the set of included basic events.

In the third step, we replace each of these basic

events in the fault tree by an OR-gate. Inputs of

an OR-gate replacing a basic event will comprise

CCF Events that contain this basic event. A pro-

fessional software tool would offer an automatic

function for these two steps. Let us assume a CCF

Group including basic events B1, B2 and B3.

Figure 1 shows an OR-gate that replaces the basic

event B1. Inputs to the OR-gate are four CCF

Events representing the individual failure of B1,

common cause failures of (B1, B2), (B1, B3)

and a common cause failure of all three compo-

nents.

Finally, we need to quantify CCF Events. Para-

metric CCF models Mosleh (1998) provide a stan-

dard way of quantification. A number of param-

eters, typically corresponding to the size of the

CCF Group, is estimated from the operational

experience. CCF Event parameters obtain their

probabilities from a formula defined in the used

parametric model. This formula takes the model

parameters and the probability of basic events

from the CCF Group as inputs.

Fig. 1. An OR-gate representing the basic event B1
included in a CCF Group with two other basic events.

There are two assumptions behind most com-

monly used parametric CCF models implemented

in software tools:

(i) All basic events within one CCF Group have

the same definition. This means that the failure

modes and failure logic/physics is the same for

all related components. As a consequence, all

basic events in one CCF Group have the same

failure probability.

(ii) All CCF Events of the same multiplicity have

the same probability. This means that it is only

the number of events failing that determines

the failure probability and not which events are

failing together.

2.2. Time-dependent Behavior

Certain basic events representing on-demand fail-

ures, for instance those modeling a failure to start

of a diesel generator, obtain their probability from

the reliability model for periodically tested com-

ponents. These components are characterized by a

fixed failure rate. The longer the component waits

in the stand-by mode, the higher the probability

that it will not start successfully. The correct func-

tioning of this component is tested periodically

with a fixed time interval between test occasions.

If the component fails at the test, it is immediately

repaired. The failure probability of this compo-

nent is therefore considered to be zero just after

the test, but it grows with the time and is highest

just before the next test occasion. Typically, an

analysis considers the mean value of this failure

probability in an analysis.

There are different strategies how to test sym-

metrical components in redundant trains or sub-

systems. One can test all components at a single
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occasion and then wait for the whole test inter-

val for the next test occasion. This is so called

synchronous testing. One can also spread testing

effort in time and test only one component at a

time. If it fails, the remaining components are

also tested and those that fail are immediately

repaired. The time until the next component is

tested will be then the test interval divided by the

number of the symmetrical components. By this,

each component is tested with the same test inter-

val, but each test occasion focuses on a different

single component. This type of testing is called

staggered testing.

There are other possibilities between these two

strategies. For instance, one can test one half of the

components at the beginning of the test interval

and the other half in the middle of the test interval.

Staggered testing lowers the effort for each test

occasion. At the same time, each occasion tests

not only the individual component, but also all

common cause failures including this component.

If the component A works then it is not possible

that components A and B fail together because

of a common cause. This means that components

are possibly tested more often with respect to

common cause failures under a staggered testing

scheme. CCF Event probabilities should be lower

under a staggered testing scheme than under the

non-staggered one.

All parametric CCF models provide a formula

for CCF Event quantification under the assump-

tion of non-staggered (synchronous) testing. The

Alpha parametric model offers additionally a for-

mula for groups of components tested according

to the staggered testing scheme ( Mosleh (1998)).

For a CCF Event with multiplicity k from a CCF

Group containing m basic events with probabil-

ity Qtot, αk being the k-th model parameter, the

probability is calculated by:

QS
k|m =

1
(
m−1
k−1

)αkQtot (1)

In both cases, the exact timing of tests does not

enter the formula. CCF Event probability is esti-

mated only from the mean failure probability of

basic events included in the same CCF Group and

parameters of the selected CCF parametric model.

It is up to the analyst to calculate the overall failure

probability of a basic event included in a CCF

group. Either it is entered directly as a probability

value calculated externally or it is estimated from

the parametric reliability model for periodically

tested events. Here, a failure rate and a test inter-

val determine the failure probability. Hence, this

probability characterizes the modeled component

in isolation, independently of other symmetrical

components.

CCF parametric models are shortcuts trans-

forming the total failure probability to failure

probabilities of CCF events. A way to look at the

CCF mechanism is that the failure rate of a com-

ponent aggregates rates with which individual or

common cause failures of different multiplicities

occur. For small failure rate values, the current

CCF parametric models can be directly applied to

failure rates. Defining CCF events with the new

CCF rates and the original test intervals gives us

the same result as the current application of the

CCF parametric model for the non-staggered case.

Software tools such

as RiskSpectrum RiskSpectrum AB (2023) offer

time-dependent analysis which can quantify CCF

Events based on the exact test times defined in a

staggered test scheme. Soga (2020) developed a

general model for quantifying CCF Events under

a staggered testing scheme. This model also takes

exact test times into account and quantifies CCF

Events depending on the included basic events.

Vaurio (2003) presents exact formulas for the Al-

pha parametric model under the staggered testing

scheme. Exact test times evenly spread over the

test interval are implicitly considered in these for-

mulas.

All of these time-dependent methods consider-

ing exact test times are based on the assumption

that the parametric CCF model splits the failure

rate of the basic event among the CCF Events.

Once we equip CCF Events with their failure

rate, we can derive their time-dependent behavior

from the test scheme applied to the CCF Group.

Note that this reverses the derivation of proba-

bilities. First, the probabilities of individual CCF

Events are calculated and then one can sum them
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up to obtain the total failure probability of the

corresponding failure mode of the component in

question. The Alpha parametric CCF model with

staggered testing takes the total failure probability

that has to be estimated beforehand and partitions

it into failure probabilities of CCF Events contain-

ing a failure of this component.

Note also, that the total basic probability ob-

tained by the time-dependent methods will be

lower for staggered testing than for non-staggered

testing. This is given by the fact that CCF Events

are tested more often under a staggered testing

scheme. Therefore, the on-demand failure prob-

ability decreases compared to the non-staggered

testing. The failure rate of a component is inde-

pendent of the testing scheme.

3. Staggered Testing in CCF Event
Quantification

In this section, we reflect on the existing possibili-

ties of modeling time-dependent behavior in CCF

Event quantification from the perspective of a

typical (nuclear) Probabilistic Safety Assessment

(PSA) model. We also propose a simple method

that brings greater flexibility for a very small cost.

Typically, a system with staggered testing in a

nuclear PSA is modeled by basic events with the

Periodically Tested reliability model. This means

that users specify a failure rate and a test interval

for each basic event. The test time offset can be

also specified, but it is used only in the time-

dependent analysis. The mean value of such basic

events will be calculated from the failure rate and

the test interval. This value corresponds to the

non-staggered testing scheme of the components

from the CCF Group.

We have the following possibilities to quantify

CCF Events under the assumption of staggered

testing.

• We can apply Equation 1 for the Alpha para-

metric CCF model with staggered testing.

• We can use Time-dependent Analysis in

RiskSpectrum PSA.

• We can use an analytical approach, e.g., Equa-

tion 11 from Soga (2020).

As shown by Soga (2020), the results of the

second and the third approach will coincide for

reliable systems where the failure rate is small.

The first approach might give different results for

the following reasons.

• The common cause failure of all m compo-

nents in the CCF Group, under the assump-

tion of equal time intervals between compo-

nent tests and a small failure rate, should be

approximately m times lower than its failure

probability calculated for non-staggered test-

ing, QS
m|m/QNS

m|m = 1/m. Equation 1 will give

this decrease if Qtot corresponds to the value

obtained from the time-dependent quantifica-

tion with the staggered testing. This can be also

approximated by QS
tot = QNS

tot /αtot, where

αtot =
∑m

k=1 kαk, where QNS
tot is the total

basic event probability for the non-staggered

testing scheme. Using QNS
tot instead of QS

tot

results in conservative estimates of CCF Event

probabilities.

• Equation 1 implicitly assumes that the test in-

tervals between components are equal for all

multiplicities. For a CCF Group with three

components A, B, and C, test interval 600

hours, and the staggered testing scheme, the

CCF Event for A and B failing together as-

sumes that there are 300 hours between the test

of A and B. But the test interval 600 hours is

split into three equal parts which means that

there are 200 and 400 hours between tests of

A and B. The probability evolution in time

is depicted in Figure 2. This assumption leads

to non-conservative estimates for multiplicities

greater than one and smaller than m.

Fig. 2. Failure probability evolution over time for a
CCF Event of multiplicity 2 out of 3 components with
staggered testing.

Using Time-dependent Analysis or an analyti-
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cal approach to quantify CCF Events will fully ac-

count for the timing information of test occasions

for individual components. This can be useful

especially in situations where the actual testing

scheme does not split the test period evenly. For

instance, consider a four-train system. One can

test trains 1 and 3 in one test occasion at the

beginning of the test period and trains 2 and 4 at

the end of the test period. This corresponds neither

to the staggered testing assumed in Equation 1 nor

to the non-staggered testing. The common cause

failure of all components can be approximated

by one half of the failure probability under non-

staggered testing. As another example, consider a

system where either train 1 or 2 are in operation,

alternating each week. Trains 3 and 4 are in stand-

by, tested once in a month.

There are also disadvantages of these ap-

proaches. Apart from the complexity of the calcu-

lation, one also fully relies on the assumption that

testing a component fully removes the possibility

of a common cause failure including this compo-

nent and this implies that failure probabilities of

other components decrease by the corresponding

amount. This is true only if the mathematical con-

cept of testing in common cause failures captures

all physical phenomena correctly. If this is not

the case, then we might take undeserved credit

for testing. Finally, the basic event probability de-

pends on parameters of other basic events. Adjust-

ing the testing offset for one basic event changes

failure probability of other basic events from the

same CCF Group.

Using the Periodically Tested reliability model

and the Alpha Factor with staggered testing

(Equation 1) does not present any relevant quan-

tification issue for realistic values of alpha pa-

rameters (Krcal and Bäckström (2014)). Marshall

et al. (1998) presents an estimate of Alpha Factor

parameter α2, with a mean value of 0.0425, and

a 95% confidence interval of [0.0079, 0.0984].

One can also observe that α1 is close to 1, and

other α factors are generally in the same order

of 10−2 or 10−3. For example a 4-folded alpha

factor model with value of αk = 0.01, k > 1, then

α1 = 0.97 and αtot = 1.06; and a 8-folded alpha

factor model with value of αk = 0.01, k > 1,

then α1 = 0.93 and αtot = 1.28. This means

that the non-staggered probability and the stag-

gered probability are approximately equal and the

uncertainties in the parameter estimates are more

significant than this difference.

Finally, we propose a simple way to specify and

quantitatively reflect the advantage one expects

from staggered testing. For each multiplicity, an

analyst specifies the minimal number of evenly

spread tests of each CCF Event of this multiplicity.

If this number is set to one then we assume only

one test, i.e., non-staggered testing. If this number

becomes k for a CCF Event of multiplicity k,

then we assume k evenly spread tests, which is

the assumption of Equation 1. For the CCF Group

with four components tested in pairs and the CCF

Event for a simultaneous failure of all of them,

we can set this number to 2. The quantification

procedure will use the non-staggered formula for

the respective model and then divide the resulting

probability by the specified number.

From the practical perspective, we believe that

it is sufficient to specify the number of tests only

for the highest multiplicity (simultaneous failure

of all components). These CCF Events typically

dominate the results. At the same time, we can use

an arbitrary number that matches the actual testing

strategy. It is easier to review this number than

the fully specified time offsets of all components

required by the time-dependent methods.

4. Asymetrical Dependencies

In this section, we analyze situations where the

assumptions for parametric CCF models specified

in Section 2.1 are not satisfied. One can use stan-

dard parametric models such as Alpha Factor or

MGL only if the system satisfies both of these

properties.

Let us consider the following multi-unit sce-

nario. Unit 1 contains two symmetrical compo-

nents with failures modeled by basic events A1

and A2. Unit 2 contains corresponding two com-

ponents with failures modeled by basic events B1

and B2. Each pair of these basic events belonging

to the same unit shares common cause failures.

Let us assume that they are modeled by the Beta

parametric model with the same parameter β for
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both units. Furthermore, we would like to consider

a multi-unit CCF including all four basic events

with the parameter βm, where βm < β. This

corresponds to three CCF groups (two single-unit

ones and one multi-unit) where each basic event

belongs to two CCF groups (each basic event

belongs to its single-unit CCF group and to the

multi-unit CCF group at the same time).

One can attempt to merge these three CCF

groups into one. Independent failures within a sin-

gle unit also include failures across the units. For

A1, it means also failures (A1, B1), (A1, B2) and

(A1, B1, B2). Common cause failures in a single

unit also include the multi-unit common cause

failure. Under the assumption that two-folded

CCFs have the same probability irrespective of

whether they are within one unit or across units,

this situation satisfies the assumptions above. Let

us additionally assume that three-folded CCFs are

not considered – they have zero probability. Then

we can model this situation by a single CCF group

with, e.g., the Alpha Factor parametric model.

The parameters for the Alpha Factor model

can be derived as follows. First, observe that

failure probabilities of basic events within a

single unit also include failures across the

units. For A1, it means also failures (A1, B1),

(A1, B2) and (A1, B1, B2). For (A1, A2), it

means also (A1, A2, B1), (A1, A2, B2), and

(A1, A2, B1, B2). Let us denote by Qβ
1 , Qβ

2 , Qβ
3 ,

and Qβ
4 probabilities of CCF Events within a sin-

gle unit and by Qα
1 , Qα

2 , Qα
3 , and Qα

4 probabilities

of CCF Events in the multi-unit scenario. We have

that

Qβ
1 = Qα

1 + 2Qα
2 +Qα

3

Qβ
2 = Qα

2 + 2Qα
3 +Qα

4

(2)

From the Beta Factor model within a single

unit, we have:

Qβ
1 = (1− β)Q

Qβ
2 = βQ

(3)

From the Alpha Factor model with parameters

α1, . . . , α4 and αt = α1 + 2α2 + 3α3 + 4α4 we

have:

Qα
1 =

α1

αt
Q

Qα
2 =

2α2

3αt
Q

Qα
3 = 0

Qα
4 =

4α4

αt
Q

(4)

From the multi-unit CCF Event modeled by the

Beta Factor with the parameter βm, we have that:

Qα
4 = βmQ (5)

Now we can derive all CCF Event probabilities:

Qα
1 = (1− 3β + 2βm)Q

Qα
2 = (β − βm)Q

Qα
3 = 0

Qα
4 = βmQ

(6)

And also Alpha Factor parameters:

α1 = (1− 3β + 2βm)αt

α2 =
3

2
(β − βm)αt

α3 = 0

α4 =
1

4
βmαt

(7)

If the operating experience of the units differs

and the components have a different failure prob-

ability in each unit, i.e., P (A1) �= P (B1), then

this scenario violates the first assumption of the

parametric models above. Considering that two-

folded CCF events across the units have zero prob-

ability (i.e., individual failures across the units

are independent) violates the second assumption

of parametric models. A two-folded CCF event

(A1, A2) has non-zero probability, but the prob-

ability of (A1, B1) is zero. Also, considering that

the beta factor of Unit 1, denoted β1, is different

from the beta factor of Unit 2, denoted β2, violates

the second assumption, because P ((A1, A2)) �=
P ((B1, B2)).

The second type of CCF parametric model ex-

tensions discussed in this paper is motivated by

situations where at least one of the assumptions

above is not valid. This implies asymmetrical de-

pendencies between components. The four com-
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ponents in our model units are not fully symmet-

rical.

The case discussed above exemplifies asym-

metric dependencies between units. This may

seem abstract and not directly applicable to the

standard PSA of a single unit, but it provides an il-

lustrative way to explain an asymmetric situation.

These types of situations can also occur within a

plant; for example, if you have a 4-train system (A

– D) where one train is always running. The train

in operation is shifted on a weekly basis between

trains A and B. All trains are also tested on a

quarterly surveillance test interval. Practically this

means that there is a start-up failure mode relevant

between three trains (A, C, D or B, C, D), but

one of the trains will have a test interval of one

week (A or B), and the other two (C and D) will

have a test interval of three months. There are

modeling techniques developed to address such

situations, but it would be desirable with a CCF

model that can take such situations into account.

Further, some data sources do not provide data

directly suitable for calculating CCF factors. Or

the data may be given directly as the CCF proba-

bility or rate.

The last resort option is always to model the

dependencies induced by common cause failures

explicitly. This means that we have to add new ba-

sic events for all combinations of basic events that

share common cause failures. These basic events

then represent CCF Events. We assign probabil-

ities of the simultaneous failure by a common

cause to these new events manually.

Whilst the explicit modelling is very flexible,

defining explicit probabilities can be tedious and

error prone and the approach often means that

one overestimates the failure probability of the

individual failure (one simply does not lower the

individual failure probability considering the CCF

failure probabilities).

Two possible ways of achieving a greater flex-

ibility in the above-mentioned cases, but that

would simplify the modeling for the user could be

to specify probabilities of common cause failures

by conditional probabilities, or to introduce a CCF

model where each multiplicity has its own defini-

tion.

The use of conditional probability to specify

common cause failures is based on a setup where

one instead of splitting the total probability of a

single basic event into multiple CCF events, spec-

ifies the conditional probability of an event, given

that one or more events from the same CCF group

have occurred. The most significant difference of

this approach compared to the explicit approach

is that a single minimal cut set encodes both a

combination of independent failures as well as

common cause failures.

A positive aspect of using conditional proba-

bilities is that the MCS list will contain only the

original event combinations – which makes inter-

pretation potentially easier and also importance

analyses will be done based on the original event.

This would also lift the first assumption from

Section 2.1 – that the basic events included in a

CCF Group have the same definition.

RiskSpectrum PSA allows users to specify con-

ditional probabilities of basic events, given that a

combination of other basic events has occurred.

For higher-order quantification and success treat-

ment, it is important to decide how complemen-

tary conditional probabilities are quantified. Krcal

et al. (2020) argue that this quantification differs

for Human Reliability Analysis (HRA) and for

CCF applications. The current implementation in

RiskSpectrum PSA keeps HRA as its primary tar-

get (Krcal et al. (2022)) which would be directly

comparable to an approach with explicit modeling

where the independent failure probability is not

lowered. We are however looking for an extension

that would cover also CCF quantification where

the probability of the independent event is man-

aged as in the prevailing CCF methods today.

Another way to provide greater flexibility, still

very much alike the existing CCF approaches,

would be to provide the ability to define each CCF

multiplicity separately. Exactly how this would be

set up remains to be defined, but the construct

would intend to satisfy the flexibility. In a sim-

ple form, it would allow the user to specify the

probability of each CCF multiplicity (considering

the number of CCF events of that multiplicity).

The user could select whether the total failure

probability would remain the same (that is, the
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independent probability would be lowered) or that

the CCF failures are additive. Note that, with

this approach the independent events can have

different failure probability (or a different setup

with regard to for example test interval). It would

also be possible to extend the model from just

specifying the probability of each multiplicity, to

provide a reliability model for each multiplicity.

In this way the staggering could be considered.

And lastly, such a model could also allow the same

event to be a part of several CCF Groups – as it is

not necessarily the original probability that is split

into different multiplicities.

Both the conditional probability, and an explicit

definition of the probability/reliability mode of

each multiplicity have several positive character-

istics that should be further investigated. At this

point, the main negative aspect is “the power of

habit” – most PSA practitioners are very familiar

with the existing models and their limitations.

5. Conclusions

In this paper we have discussed some aspects and

limitations of the existing prevailing methods for

CCF modeling in PSA.

We have studies the time dependent behavior

induced by staggered testing of components and

have come to the general conclusion that the dif-

ference between the more precise time dependent

methods and the Alpha Factor model with stag-

gered testing differ only slightly. The conservative

bias induced by using the Periodically Tested re-

liability model for basic events becomes negligi-

ble for typical values of Alpha parameters. Also,

for the typically dominating CCF Event includ-

ing failures of all components, the Alpha Factor

model with staggered testing does not underap-

proximate the probability.

To extend the flexibility of the staggered ap-

proach, we propose a method where the user can

specify the amount of tests that are performed at

different occasions within the CCF Group. This

would allow for a more flexible use of the stag-

gered approach, but still have a definition of the

CCF Group that is easy to review and understand.

We also discuss asymmetric CCF and the pos-

sibility to extend the methods for CCF definition.

The two concept we propose are use of conditional

quantification and definition of CCF Groups by

specification of each multiplicity separately.
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