
Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Edited byMário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio
©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore.
doi: 10.3850/978-981-18-8071-1_P529-cd

Optimisation of maintenance by piecewise deterministic Markov processes under

conditions of population heterogeneity

Sabrine Dachraoui
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The relevance of a maintenance decision hinges partly on the model’s ability to estimate the current health of
a system and predict its future evolution based on available information, particularly in cases where access to
degradation data is severely limited. This is the context in which we undertake this work. Physics-based approaches
can be used to overcome data scarcity, but their models are typically constrained to specific regions. Additionally,
degradation phenomena can exhibit highly diverse behaviors that can result in suboptimal maintenance decisions if
based solely on population-average degradation performance. Our study aims to explore the potential of Piecewise
Deterministic Markov Process (PDMP) in a condition-based maintenance policy when there are variations in
behavior within the available sample. We place a strong emphasis on the phenomenon of fatigue cracking. Our
demonstration’s first phase involves modeling crack evolution behaviors using PDMP-based approaches while
identifying the limits of validity of physical models directly from data. We highlight the heterogeneous behaviors
of crack evolution. Once we apply a classification algorithm, we define and evaluate a condition-based maintenance
strategy tailored to each population.

Keywords: PDMP, Condition based maintenance, Population heterogeneity, Physic based approach, Machine Learn-
ing.

1. Introduction

Maximizing the potential of structures heavily

relies on the implementation of efficient mainte-

nance strategies, guaranteeing peak performance

and extended durability. Recently, there has been

a growing focus on Condition-Based Mainte-

nance (CBM). Nonetheless, the effectiveness of

the decision-making process in CBM is heavily

reliant on the accuracy of the model used to es-

timate and predict the health of a system. This

requires CBM models to incorporate all relevant

data in their analyses. Furthermore, these mod-

els should be able to adjust to any variations in

the operating environment and still provide pre-

cise predictions rather than general or approxi-

mate estimations. Generating precise predictions

can be challenging when there is a lack of data.

In such circumstances, physics-based approaches

can provide an alternative solution. When con-

structing (CBM) models for discrete-state deteri-

oration, two methods that have gained widespread

adoption are the Markov decision process (MDP)

and the semi-Markov decision process (SMDP)

Tang et al. (2015); Wang et al. (2008); Chen and

Trivedi (2005) . However, these models have a

fundamental limitation in that the deterioration

process is limited to either a random process with

independent increments or a deterministic pro-

cess. As a result, these models may not be suit-

able when attempting to describe continuous dam-

age processes, and they are unable to precisely

model deterministic processes that incorporate a
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jump process. Thankfully, the PDMP model Davis

(1993) provides a solution to both of these issues.

By allowing the process to jump randomly while

remaining continuous between jumps, the PDMP

model can accurately describe the processes of

continuous and deterministic damage. Wang and

Chen (2022) have made significant advances in

the field of imperfect maintenance modeling by

introducing a novel approach that incorporates a

piecewise deterministic Markov process. This new

model considers both random shocks and natural

degradation and incorporates a physical formula

to calculate the latter. Similarly, the PDMP model

developed by Arismendi et al. (2021) also uti-

lizes distinct degradation states to inform main-

tenance decisions. Unlike the aforementioned ex-

ample, the continuous component of the PDMP

model’s deterministic evolution between two con-

secutive jumps advances at a constant rate of

one, making it a particular case of PDMP known

as a piecewise-linear process. In contrast, Lin

et al. (2018) framework for modeling and opti-

mizing maintenance of systems focuses on ac-

counting for epistemic uncertainty by describ-

ing degradation processes of components using

piecewise-deterministic Markov processes. While

most maintenance policies discussed above as-

sume uniform degradation patterns across all com-

ponents, this oversimplification can result in sub-

optimal decision-making. In practice, components

may degrade at varying rates due to different fac-

tors. Failing to account for these variations can re-

sult in over-maintaining some components while

under-maintaining others. One way to achieve this

is through on-line monitoring. By analyzing the

collected data, it is possible to differentiate com-

ponents that degrade at different rates , allowing

for timely maintenance and replacement. As far as

our research has found, there is currently no litera-

ture that investigates the use of PDMP to construct

a maintenance model that considers the highly

heterogeneous behavior of degradation phenom-

ena. The purpose of this paper is to explore the

potential of PDMP in the context of maintenance

decision, and especially for condition-based main-

tenance with little data. As mentioned above, the

behavior of a degradation of the same system can

present several phases that are difficult to cap-

ture within the same mathematical model. These

phases can be related to the physical phenomena

of the degradation or to different operational so-

licitations that are not always directly observable.

We propose in this paper a decision structure that

integrates this volatility of the degradation model

in a dynamic way. The paper is structured as

follows: Section 2 provides a brief overview of

the degradation modeling process using a PDMP.

Section 3 explains the decision-making process in

maintenance and details the cost function used.

Finally, Section 4 presents the results obtained

from our policy and compares them with existing

approaches to evaluate the effectiveness of the

proposed maintenance policy.

2. Degradation modeling using
Piecewise-deterministic Markov
processes

The study of fatigue crack propagation is an in-

triguing yet demanding topic due to the unpre-

dictability it presents Virkler et al. (1979). While

this phenomenon has been extensively studied

in the scientific community, the development of

physical models that accurately describe the pro-

cess of crack propagation has become a challeng-

ing task. One of the reasons for this challenge is

that some physical models have become too pa-

rameterized, leading to long calculation times and

diminished practicality. Researchers have added

numerous parameters to the model in an attempt

to capture the complexity of real-world phenom-

ena and respond to specific issues. However, this

approach presents another layer of complexity to

the modeling process, as these parameters must

be estimated from indicators that are correlated

to them. The issue with a highly parameterized

model is that it becomes difficult to use in prac-

tical applications. The model’s accuracy is limited

by the accuracy of the parameter estimates, and

estimating a large number of parameters can be

time-consuming and expensive. Additionally, as

the number of parameters increases, the model’s

performance may deteriorate, leading to overfit-

ting and poor generalization to new data. To strike

a balance between the complexity of the model
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and its practical usability, it’s important to con-

sider alternative approaches that capture only the

essential features of a given phenomenon without

overwhelming the model with unnecessary com-

plexity. In fact, utilizing piecewise-deterministic

Markov processes is precisely how we plan to pro-

ceed Davis (1993). PDMPs are a powerful tool for

modeling systems with jumps or discontinuities ,

as they capture the underlying dynamics of such

systems. By using a continuous-time differential

equation to model the deterministic component

of the dynamics and a jump process to model

stochastic jumps, PDMPs provide a more accurate

representation of the system’s behavior without

making the modeling process overly complex.

In addition to their accuracy, PDMPs are also

highly flexible. They can be constructed using a

wide range of differential equations and jump pro-

cesses, making it easy to tailor them to the specific

characteristics of the system being modeled. How-

ever, it’s worth noting that the physical model used

by our PDMP is not universal, as the behavior

of the crack can vary depending on its region.

To ensure accuracy, the physical model is defined

within a specific domain of validity that repre-

sents the range of conditions where the model can

accurately predict the behavior of the crack. For

our analysis, we specifically investigate the Paris-

Erdogan model Paris and Erdogan (1963) as our

chosen physical model within the scope of this

study. This model is well-suited to our needs and

provides a solid foundation for our investigation

into the behavior of the crack . It is expressed

mathematically in the following formula:

da

dN
= C

(
Δσ

√
πa cos

(πa
w

))m

(1)

where Δσ is the stress amplitude, w is the

width of the specimen and C and m are mate-

rial constants. To accurately model the propaga-

tion of a fatigue crack through a PDMP denoted

as(aN , (m,C)N )N≥0, and account for variability

in fatigue testing Virkler et al. (1979), we employ

a stochastic modeling approach by randomizing

the constant C and m . This approach enables us

to capture both the length of the crack aN and

the mode of propagation (m,C)N . As a result,

the evolution of the crack in the first regime of

propagation is described using the deterministic

Paris equation, which involves a couple of pa-

rameters (m1, C1). An initial condition of a0 =

9 mm is used, and the equation is applied un-

til a random jump time TS . At this point, the

parameters (m1, C1) are randomly modified to

(m2, C2), indicating the start of the second regime

of propagation.

3. Maintenance optimization under
uncertainty

3.1. Maintenance decision process

Our maintenance decision process is structured

around six finely-tuned steps.

Step 1: Unveiling Crack Classification through
Machine Learning
In this step, our main goal is to precisely de-

termine the class of a sustained crack which is

dependent on two crucial assumptions. First, we

rely on having access to q measurements taken at

an early stage of propagation. Second, we assume

that the monitoring metrics we use provide precise

representations of the crack’s actual size. Since

this problem is complex, it requires a sophisticated

approach for effective resolution. To tackle this

challenge, we employ a data-driven methodology

that utilizes supervised Machine Learning tech-

niques to develop a model capable of accurately

recognizing the class of a given crack with only a

few pieces of information.

Step 2: Calculating the jump time
Once we identify the crack population, we search

for the date that can correspond to the jump time

Ts using the available q data. In section 4, we

delve into the technique utilized for carrying out

this task, which is based on the PDMP model.

Step 3: Predicting crack growth
Upon calculating the jump time Ts, we move to

predict the propagation of the crack. Although

Bruno Sudret Sudret (2007) proposed a Bayesian

framework that incorporates early-stage crack

measurements to update the joint probability den-

sity function of the Paris law parameters and en-

ables prediction of the remaining part of the curve,

the experimental curve eventually deviates from

the predictions after 175,000 cycles. To unlock

even greater accuracy and efficiency in our results,
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we propose a revamped Metropolis-Hastings al-

gorithm that utilizes techniques from our PDMP

modeling, offering a bold new approach.

Step 4: Determining Optimal Decision Vari-
ables
The pivotal stage of this study is the determi-

nation of the optimal decision variables for our

maintenance policy, xp and τ , based on the ob-

served population. To accomplish this, we employ

an optimization algorithm known as the genetic

algorithm.

Step 5: Maintenance decision-making
This step involves using the information collected

from inspections performed on a specific date τ

and associated with a cost ci to guide the main-

tenance tasks. Underlying the policy are two key

premises. if a crack length reported by an in-

spection reaches a predefined threshold for pre-

ventive maintenance (xp ≤ aτ < xc), the compo-

nent is replaced to prevent further damage, in-

curring a preventive maintenance cost cp. Alter-

natively, if the component is detected to have

failed (xc ≤ aτ ), corrective maintenance is per-

formed to restore it to its initial state, incurring

a corrective maintenance cost cc. Inspection tasks

are assumed to be of negligible duration, and all

maintenance actions are expected to be performed

instantaneously. If a replacement (whether pre-

ventive or corrective) is carried out during the

inspection, the maintenance decision process con-

cludes. Otherwise, the process moves on to step 6.

Step 6: Integrating Real-Time Data into Main-
tenance Decision-Making
To develop more accurate maintenance plans, we

integrate real-time inspection data into the main-

tenance decision-making process. This data is an-

alyzed to identify patterns and trends, enabling

the development of new decision rules that are

adjusted accordingly.

The maintenance process described above is illus-

trated in the diagram shown in Figure 1.

3.2. Economic performance criteria

To guarantee peak system performance, it is cru-

cial to carefully choose decision parameters. The

optimization of this maintenance policy is done

using the long-run average cost rate as a criterion

Fig. 1. Strategy diagram.

, which takes into account the expected expenses

associated with both preventive and corrective re-

placements over the lifespan of the crack. Since

the aim is to develop a maintenance policy that

is both cost-effective and reliable in preventing

and correcting potential issues with the system,

the problem of maintenance optimization can be

defined as:

C∞ (xp, τ) = lim
N→+∞

C(N)

N
(2)

Where C(N) represents the cumulative mainte-

nance cost at time N . Optimizing this policy

amounts to searching for the values of xopt
p and

τopt that minimize the function:

C∞
(
xopt
p , τopt

)
= min

xp,τ
{C∞ (xp, τ) , τ > 0, 0 < xp < xc} (3)

In order to evaluate this function, it’s necessary

to understand how the system behaves when sub-

jected to this policy in steady state. However,

because the system is as good as new after each

replacement, its evolution restarts independently
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of its past, resulting in an identical probabilistic

behavior each time. Therefore, the evolution of

the maintained system is considered a regener-

ative process, and the points of system replace-

ment are called renewal points. By applying the

renewal theorem, it’s possible to evaluate the av-

erage asymptotic cost, which is the ratio of the av-

erage cost over a renewal cycle, E(C(S)), to the

average length of the cycle, E(S). The equation

previously mentioned as (2) can be rewritten as:

C∞ (xp, τ) = lim
N→+∞

C(N)

N
=

E(C(S))

E(S)
(4)

The following formula calculates the average cost

incurred during a renewal cycle :

E(C(S))

=

+∞∑
k=1

k · ci ·
(
P (xp ≤ ak.τ < xc) · 1{xp≤ak.τ<xc}

+P (xc ≤ ak.τ ) · 1{xc≤ak.τ}
)

+cc · P (xc ≤ ak.τ ) · 1{xc≤ak.τ}
+cp · P (xp ≤ ak.τ < xc) · 1{xp≤ak.τ<xc}

(5)

The equation below is used to calculate the re-

newal cycle .

E(S)

=

+∞∑
k=1

k · τ · (P (xp ≤ ak·τ < xc) · 1{xp≤ak·τ<xc}

+P (xc ≤ ak·τ ) · 1{xc≤ak.τ}
)

(6)

Here, k refers to the number of inspections per-

formed, 1{.} corresponds to the indicator func-

tion, which takes on a value of 1 if the ar-

gument is true, and a value of 0 otherwise ,

and P (xp ≤ ak.τ < xc) and P (xc ≤ ak·τ ) re-

spectively represent the probabilities of preventive

and corrective replacement. modeling this mainte-

nance policy can be complex due to the limited

applicability of the Paris model to certain regions,

particularly given the abundance of possible re-

newal scenarios. The calculations made are ex-

plained in detail in the annex of this document.

4. Results assessment

4.1. Estimation of the PDMP model
parameters

In this section, we showcase the outcomes of our

maintenance policy as it was applied to the Virkler

database Virkler et al. (1979). Incorporating this

one, we determine the parameters of the PDMP

model proposed in Section 2. For each empirical

crack, we aim to identify the realizations of the

random variables (m1, C1, Ts,m2, C2) that best

align the experimental curve with the theoretical

curve defined by these parameters. Our approach

to addressing this problem involves formulating

an optimization framework as follows:

min
(m1,C1,Ts,m2,C2)

f (m1, C1, Ts,m2, C2) =

q=164∑
i=1

[
aitheo (m1, C1, Ts,m2, C2)− aiexp

]2 (7)

At each measurement i , we define aitheo as the the-

oretical crack length and aiexp as the experimental

crack length. Our PDMP model seems to accu-

rately capture the behavior of the empirical data,

as evidenced by the satisfactory fit observed be-

tween the simulated and Virkler cracks. In agree-

ment with previous literature on single-regime

propagation Perrin (2008), we observe a correla-

tion between m and log(C) in both regimes of our

model. Upon analyzing the heterogeneous degra-

dation behavior present in the Virkler database,

we arrived at a decision to categorize it into two

distinct classes. The first class includes the eight

cracks located at the end of the Virkler bun-

dle, which represent the ”slow cracks” category.

The second class comprises the remaining cracks

within the Virkler bundle, which belong to the

”fast cracks” category. As we develop our PDMP

model, we rely on estimated parameter statistics

that capture the unique characteristics of cracks

within each population. Table 1 provides a sum-

mary of these results.

4.2. Example of policy optimization and
performance analysis

To assess the effectiveness of our maintenance

policy, we employed Monte Carlo method to sim-

ulate the propagation of two population cracks,
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Table 1. Statistics of the parameters estimated from the

68 empirical cracks.

Population 1 Population 2

m1 logN (0.887, 0.041) logN (0.931, 0.069)

m2 N (2.620, 0.147) N (2.626, 0.029)

Ts E(154589) E(116537)
log (C1) =

h1 (m1)
−5.824m1 − 9.724 −5.565m1 − 10.244

log (C2) =

h2 (m2)
−6.102m2 − 8.631 −6.065m2 − 8.667

using statistical data from Table1. We assumed

a limited amount of initial information (q = 5)

regarding their propagation. Leveraging our train-

ing model, we accurately classified these cracks

and determined the optimal decision parameters

and maintenance cost rate based on intervention

costs and failure thresholds (ci = 5, cp = 16,

cc = 20, xc = 40), which are presented in Table

2. After applying these decision rules, we deter-

Table 2. The first inspection optimal results.

τ xp C∞
Population 1 9.618e+ 04 33.450 8.699e− 04

Population 2 9.617e+ 04 34.018 9.159e− 05

mined that both cracks were below their respective

preventive threshold. We then integrated the new

observations with the initial ones to update our

predictions and identify new optimal values. The

results are presented in Table 3. As was the case

Table 3. The second inspection optimal results.

τ xp C∞
Population 1 1.958e+ 05 34.404 6.218e− 05

Population 2 1.931e+ 05 32.336 6.772e− 05

during the first inspection, no replacements were

made during the second one. Instead, we estab-

lished new decision variables, which are presented

in Table 4. Based on these variables, we decided

to proactively replace both cracks as a preventive

measure. The results of our study showed that our

proposed maintenance policy recommends carry-

ing out inspections on both cracks at almost the

same date, regardless of their population. This

Table 4. The third inspection optimal results.

τ xp C∞
Population 1 2.000e+ 05 29.010 6.110e− 05

Population 2 2.208e+ 05 15.743 6.178e− 05

indicates that the decision variable determining

the inspection date is independent of the popula-

tion of a given crack. Moreover, when examining

the preventive threshold at the first and second

inspections, we found that it was nearly identical

for both cracks. By studying the Virkler bundle on

the dates of these two inspections, it is evident that

all cracks behave and deteriorate in the same way,

as their density is high. As a result, the preventive

threshold is almost identical for these two cracks.

However, during the third inspection, our main-

tenance policy suggested a high failure threshold

for a slow crack compared to a fast crack. This ap-

proach is logical because, by studying the Virkler

bundle on the date of the third inspection, we

can see that the different cracks began to behave

heterogeneously. This indicates that our mainte-

nance policy is more cautious towards a fast crack

than a slow crack. If we shift our attention to the

evolution of the long-term average maintenance

cost rate, we can observe that integrating new data

to our decision process has led to a reduction in

cost for both of our case studies. Hence, we can

conclude that incorporating real-time monitoring

data into our process lowers maintenance costs.

To evaluate the efficacy of our policy, we con-

ducted a comparative analysis with an alternative

policy that relied on a physical degradation path

model for crack propagation, assumed a homoge-

neous population, and lacked integration of online

data monitoring into the maintenance decision-

making process. The outcomes can be viewed in

Table 5. The decision rule was applied to the

Table 5. The optimal decision variable values and

corresponding average long-run cost rate of policy

2.

Δτ xp C∞
9.618e+ 04 34 1.043e− 04

two cracks under study, and based on the preven-
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tive limit, no replacement was necessary during

the first two inspections. However, in the third

inspection, the size of the cracks exceeded the

preventive limit, indicating the need for corrective

replacement. Therefore, a replacement was made

as per the maintenance plan. This results show-

cases the value of utilizing a PDMP to model the

crack propagation process, underscoring the po-

tential benefits of integrating new monitoring data

into maintenance decision-making using a well-

constructed decision-making framework. While

the identification of the crack population did not

lead to a significant temporal adaptation of the

policy, it did trigger a conditional adaptation, re-

vealing the approach’s adaptability and flexibil-

ity. Taken together, these findings highlight the

efficacy of PDMPs in crack propagation analysis

and decision-making, emphasizing the importance

of a dynamic and responsive approach to mainte-

nance optimisation.

5. Conclusion

In this paper, we introduce an effective ap-

proach for managing fatigue cracks by develop-

ing a conditional maintenance policy based on

a PDMP model. Our approach incorporates the

well-established Paris Erdogan physical law and

integrates literature data to estimate the model

parameters, enhancing its reliability and accu-

racy. Real-time monitoring data is also incorpo-

rated, which enables dynamic decision-making

and further improves our model’s predictive abil-

ity. Our results demonstrate that integrating real-

time monitoring data into the PDMP model re-

duces costs, thereby making our method a cost-

effective alternative to existing approaches. Al-

though we found that resolving heterogeneity did

not significantly impact the adaptation of our pol-

icy to the population of the crack studied, our

approach is highly adaptable and can be applied

to more heterogeneous cases with ease. This high-

lights the versatility and robustness of our ap-

proach, making it a valuable tool for informing

effective maintenance strategies.

Appendix A. Probabilities of different
maintenance interventions

The probability of preventive replacement can be

determined by considering the two propagation

regimes.

P (xp ≤ ak.τ < xc)

= P ((xp ≤ ak.τ < xc) ∩ (k.τ < Ts))

+P ((xp ≤ ak.τ < xc) ∩ (Ts ≤ k.τ))

(A.1)

P ((xp ≤ ak.τ < xc) ∩ (k · τ < Ts))

= P ((xp ≤ ak·τ < xc) | (k · τ < Ts)) · P (k · τ < Ts)

= P ((xp ≤ ak.τ < xc) | m1) · P (k · τ < Ts)

=

((∫ mxc
1

m
xp
1

f (m1) dm1

)
· 1{Np<Nc<Ts}

+

(∫ mas
1

m
xp
1

f (m1) dm1

)
· 1{Ts≤Nc}

)

·
∫ +∞

k.τ

f (Ts) dTs

(A.2)

P ((xp ≤ ak.τ < xc) ∩ (Ts ≤ k · τ))
= P ((xp ≤ ak.τ < xc) | (Ts ≤ k · τ)) · P (Ts ≤ k · τ)
= P ((xp ≤ ak.τ < xc) | (m1,m2)) · P (k · τ ≤ Ts)

=

((∫ mas
1

m1

f (m1) dm1 ·
∫ mxc

2

0

f (m2) dm2

)

.1{0<Np<Ts}

+

(∫ +∞

0

f (m1) dm1 ·
∫ mxc

2

m
xp
2

f (m2) dm2

)
· 1{Ts≤Np}

)

·
∫ k·τ

0

f (Ts) dTs

(A.3)

The probability of not replacing can be calculated

similarly to the probability of preventive replace-

ment.

P (ak.τ < xp)

= P ((ak.τ < xp) ∩ (k.τ < Ts))

+P ((ak.τ < xp) ∩ (Ts ≤ k.τ))

(A.4)
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P ((ak.τ < xp) ∩ (k · τ < Ts))

= P ((ak.τ < xp) | (k · τ < Ts)) · P (k · τ < Ts)

= P ((ak.τ < xp) | m1) · P (kτ < Ts)

=

((∫ m
xp
1

0

f (m1) dm1

)
· 1{0<Np<Ts}

+

(∫ mas
1

0

f (m1) dm1

)
· 1{Ts≤Np}

)

·
∫ +∞

k.τ

f (Ts) dTs

(A.5)

P ((ak.τ < xp) ∩ (Ts ≤ k · τ))
= P ((ak.τ < xp) | (Ts ≤ k · τ)) · P (Ts ≤ k · τ)
= P ((ak.τ < xp) | (m1,m2)) · P (Ts ≤ k · τ)

=

(∫ +∞

0

f (m1) dm1 ·
∫ m

xp
2

0

f (m2) dm2

)

·
∫ k·τ

0

f (Ts) dTs

(A.6)

The probability of performing a corrective re-

placement can be calculated based on both the

probability of preventive replacement and the

probability of not performing any replacements.

P (xc < ak.τ )

= 1− (P (xp ≤ ak.τ < xc) + P (ak.τ < xp))
(A.7)

In the above equations, as represents the length of

the crack at the jump time Ts, while Np and Nc

respectively refer to the dates on which the crack

reached the preventive and failure thresholds. To

calculate mx
i (where i ∈ {0, 1} ) , a polynomial

regression of the Paris model is performed from

the beginning of regime i until the time of reaching

x. The resulting slope of the polynomial repre-

sents mx
i .
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