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Unstable approaches have been identified as the main factor in most aviation accidents, making the identification of
precursors to achieve such event prediction critical for ensuring the safety and reliability of flights. However, data
preparation before precursor identification is challenging due to high-dimensional variable-length time series in a
specific flight phase. In this study, we propose a pipeline for flight data preparation that offers standardized inputs
for the precursor mining phase and labeled outputs for the unstable approach identification phase. The raw inputs
are processed by an automatic feature selection based on correlation analysis. Additionally, a uniform dynamic time
warping method is proposed to transform inputs with variable lengths into equal lengths for modeling, addressing the
challenge of input variability caused by different tasks and weather conditions. The effectiveness of the preparation
method in flight data is validated using flight data collected from regional aircraft. It is also possible to be extended
to other adverse events occurring in flight phases in terms of precursor identification.

Keywords: Data Preparation, Unstable Approach Events, Automatic Feature Selection Strategy, Uniform Dynamic
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1. Introduction

Unstable approach events have been identified

as common and potentially dangerous events in

many aviation accidents. It can result in a hard

landing, loss of aircraft control, runway excursion,

and collision with terrain or infrastructure [10].

So, it stimulates the demand for precursor iden-

tification for event prediction, which provides a

proactive way to ensure safety in aviation. How-

ever, flight data always tend to be high dimen-

sional and variable-length. In this paper, we pro-

pose a pipeline for data preparation of precursor-

based event prediction.

Precursor-based event prediction is a proactive

way to find safety events by identifying precur-

sors in advance. Precursors are defined as key

anomalous behaviors triggering safety events, also

with a high likelihood of the events occurring in

the future. It not only offers one effective way to

predict safety events but also provides automated

explanations. The unstable approach prediction

can be achieved by building a model according

to standard inputs and labeled outputs. Fig. 1

shows a general descending and approach phases

of an aircraft before touchdown. The key anno-

tated phases, precursor mining phase (PMP) and

unstable approach detection phase (UADP) are the

raw data sources for generating standard inputs

and labeled outputs.

Flight data always tend to be high-dimensional,

which needs to be prepossessed without altering

the original feature representation before model-

ing. Dimension reduction offers a way to transfer

high-dimensional data to low-dimensional data.

It could be executed by two main methods, fea-

ture selection, and feature extraction. Compared

to feature extraction, feature selection that outputs

a feature subset from the original feature set so as

to preserve the original feature representation out-

performs feature extraction which alters the origi-

nal representation [13]. Feature selection methods

include filter, wrapper [11], embedded [1], and hy-

brid [4]. The filter methods, like Pearson correla-

tion, are applied in our automatic feature selection

process. It is mainly because they have a good

performance and own high-efficiency computing,

especially for high dimensional flight data [14].

Moreover, the length of each flight in a specific
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Fig. 1. Descending and approach phases of aircraft

phase is varied, which is caused by its flight plan,

weather condition, and so on. Also, before reach-

ing a stable approach different pilots may need

uncertainty adjustments in a descending phase.

It brings difficulty when defining a fixed length

of precursor mining phase in unstable approach

event prediction. Janakiraman [9] re-sampled time

series at every quarter nautical mile starting ap-

proximately 25 nautical miles away from the run-

way. Ackley et al. [2] selected every 250-feet

altitude from 3000 feet to landing. However, they

are unable to characterize flight paths, either in

terms of lateral distance or vertical height. In

this case, dynamic time warping (DTW) could be

used to rearrange variable-length time series in the

precursor mining phase to find a warped query

with the shortest distance compared to a flight

path template. However, when each warped query

meets the shortest distance, each may not be at the

same length though it considers the flight path to

change query arrangement.

This paper proposes a pipeline to prepare stan-

dard flight data for precursor-based unstable ap-

proach prediction. It applies automatic feature se-

lection based on the Pearson coefficient to lower

flight data dimension and raises a unified DTW to

later each query’s arrangement to represent flight

path, also keeping each query’s length the same as

a reference.

2. Identifying Unstable Approach
Events

In this paper, data preparation consists of two

steps, that is generating standard low-dimensional

inputs with equal-length precursor mining phase

(PMP) and labeling events in the unstable ap-

proach detection phase (UADP). So, unstable ap-

proach prediction can be achieved by building a

model according to standard inputs and labeled

outputs. In Section 2, the labeled outputs of the

unstable approach can be obtained by the follow-

ing process.

Suppose multi-dimensional time series as in-

puts X(N,L,D) where N is the number of samples,

L is the maximum length of time series and D

is the number of sensor variables, standard inputs

Xinput in PMP and labeled outputs Youtput in
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UADP can be expressed as,

Xinput = X(N,l,d)
pm (1)

Youtput = RULE(Xua) (2)

where Xpm and Xua are time series in PMP and

UADP alternatively. l is the number of selected

sensor variables (l � L) and d is the fixed length

of the time series. RULE(·) is exceedance rules

to define unstable approach events and Youtput ∈
[0, 1] is labels of unstable approach events where

1 states unstable approach happens and vice versa.

In terms of unstable approach events time series

in PMP and UADP are required to be identified

in an aircraft descending and approach phases.

In order to make the use of time series from the

flight recorder, an appropriate altitude need to

be identified and selected carefully. According to

the distribution of the altitude at which unstable

approach events occur, time series in UADP Xua

is defined where the altitude is below 1000 feet be-

fore landing. Furthermore, the time series between

3000 feet and 1000 feet altitude in a descending

phase is time series in PMP Xpm, which captures

around 2 minutes sufficient to seek precursors

happening prior to unstable approach events. In

summary, PMP aims to mine precursors triggering

unstable approaches, while UAIP needs to detect

unstable approaches.

To determine which flight contains an unstable

approach, the exceedance rules RULE(·) is ap-

plied to detect unstable approach, mainly referring

to several reports from Flight Safety Foundation

[7] [6], International Civil Aviation Organization

[8], European Union Aviation Safety Agency [5]

and Boeing [3]. According to specific flight data,

sensor variables and their threshold requires to

be adjusted in reality considering that the flight

data always doesn’t contain all the information

used to verify the requirements in a specific stan-

dard above. The exceedance rules in the paper are

shown in Table 1, including Glideslope Deviation,

Localizer Deviation, Sink Rate, Drift Angle Rate,

Late Flap Extension, Speed Brake Deployment,

N1 Thrust, Final Approach Airspeed Reference.

The final approach airspeed reference Vapp states

whether an airplane is descending too slowly or

too high in the final approach phase. Due to the

lack of Vapp in flight recorders, this paper esti-

mates it by its definition which is the mean air-

speed under 50 feet high above touchdown in a

statistical way.

An unstable approach is detected when at least

one of the rules is met. In this case, we could

obtain the labeled outputs Youtput of unstable ap-

proach events in UADP via the built exceedance

rules in Table 1.

3. Automated Feature Selection Using
Statistical Methods

In the following Sections, given time series in

PMP Xpm, standard low-dimensional and equal-

length input Xinput can be get by automatic fea-

ture selection based on correlation coefficient and

uniform dynamic time warping, alternatively.

First, a correlation analysis is exhibited by

Pearson’s correlation coefficient to reduce fea-

ture space, as well as to enhance predictive

performance. Highly correlated variables would

present similar feature importance scores so as

to skew feature importance ranking and increase

the model’s complexity and computation. Given a

parameter pair x and y, the Pearson’s correlation

coefficient ρx,y is represented as,

ρx,y =
cov(x, y)

σxσy
(3)

where cov(x, y) is the covariance of a parameter

pair (x, y), and σx and σy are the standard de-

viation of x and y separately. When a parameter

pair’s |ρx,y| > δ, then one of them will be deleted.

So, given the datasets X ∈ Rn×m, its’ numerical

variable vector V ar ∈ Rm×1, the variable vector

to be saved V arsave and to be deleted V ardel and

visited feature vector Fvi, the new selected vari-

ables V arsel can be obtained by Feature selection

based on correlation analysis algorithm, shown in

below:

In the above algorithm, outliers remover must

be done before normalization in order to improve

the effectiveness of normalization. Also, when

discrete variables exist, an extra criterion is intro-

duced by whether a variable has limited constants

to identify discrete variables, in case of acciden-
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Table 1. Exceedance Rules for Unstable Approach.

Variables Specific Parameters Type Rules Duration

Glideslope Deviation Glideslope Deviation (GSD) Analogue |GSD| > 1 dot 5
Localizer Deviation Localizer Deviation (LD) Analogue |LD| > 1/4 dot 5
Sink Rate Sink Rate (SR) Analogue SR > 1000 feet/min 3
Drift Angle Rate Standard Deviation of Drift Angle Rate (SDYR) Analogue SDYR > 1.25 3
Late Flap Extension The Delta Flap Level Position (DFLP) Discrete |DFLP| > 0 1
Speed Brake Deployment The Delta Brake Position (DBP) Discrete |DBP| > 0 1
N1 Thrust Engine N1 Thrust (ENT) Analogue ENT/ENTref < 35% 5
Airspeed Calibrated Airspeed (CAS) Analogue CAS <Vapp -5 kts or CAS >Vapp + 10 kts 5

Note: ENTref : Engine N1 Thrust Reference; Vapp: 140 kts.

Algorithm 1 Automated Feature Selection Using

Statistical Methods

Input: X ∈ Rn×m, V ar ∈ Rm×1, Fvi = [ ]

1: Remove outliers in X , Normalize X , and

delete variables with low standard deviation

which is lower than 10−5 in X

2: Calculate the correlation coefficient matrix

ρ ∈ Rm×m of each pair (i, j) in V ar, where

i, j ∈ [1, 2, ...,m]

3: Update ρ = ρ[ |ρ| > δ & ρ! = 1 ]

4: repeat

5: Obtain the indices corridel of the non-NAN

elements in ith column in ρ

6: Save the variables corresponding to corridel
into V ardel

7: Update Fvi by V ardel ∪ Fvi

8: until |Fvi| = m {Stop when all the variables

have been visited}
9: Obtain V arnew by deleting V ardel in V ar

10: Calculate {FDR1, FDR2, ..., FDRk, ...}
for each variable in V arnew

11: Determine the number of selected features l

by l = min{k | ∑k
i=1 FDRi >= ζ}

12: Return V arsel with l highest FDR in a de-

scending order

Output: V arsel

tally removing those variables with outliers.

After variables reduction by Pearson’s correla-

tion coefficient, the next step is to employ Fisher

Discriminant Ratio (FDR) to select the optimal

feature subset in V arnew to improve the discrim-

inatory power of selected features between two

classes. The FDR is presented as:

FDR =
(m1 −m2)

2

(σ1 + σ2)2
(4)

where m1 and m2 are the mean values and σ1

and σ2 is the standard deviation of a feature in

two classes. Then all variables will be ranked

by their FDR values FDR1, FDR2, ..., FDRs in

descending order. The number of selected features

l are determined by,

FDRi =
FDRi∑s
i=1 FDRi

(5)

l = {min{k} |
k∑

i=1

FDRi >= ζ} (6)

where ζ is the cumulative FDR threshold for fea-

ture selection. Therefore, l sensor variables are

carefully selected in Section 3.

4. Uniform Dynamic Time Warping

The precursor mining phase aims to identify pre-

cursors that lead to unstable approach events, but

due to differences in tasks and weather condi-

tions during the descending phase, the resulting

time series may have variable lengths, which is

not suitable for modeling that relies on equal-

length inputs. The standard dynamic time warping

(DTW) [12] can find the shortest path to align

variable-length time series, but it cannot ensure

that all warped time series are comparable because

they may be aligned to different indices of the

reference signal. Therefore, this paper proposes an

extension of DTW called uniform dynamic time

warping (UDTW), which can transform variable-

length time series into equally-length ones by en-

suring that every element in the reference signal is

matched to an index in the query signal.

In the specific context of PMP, UDTW defines

an alignment match between a reference signal



1717Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

and a query signal inferred from the ratio altitude

(RA) high above touchdown (HAT) with a fixed

length. This alignment matrix is then applied to

the remaining variables. RA is chosen as the ref-

erence variable because pilots must strictly follow

standard tasks during flight phases, and the tasks

are always relative to a specific RA that offers

direct instructions. For instance, a stable approach

must be completed at around 1000 feet HAT in

instrument meteorological conditions or 500 feet

HAT in visual meteorological conditions. There-

fore, it is reasonable to use RA HAT as a reference

to rearrange other variables and ensure that all

warped time series have equal lengths.

Suppose Reference signal R ∈ Rk×1, Query

signal Q ∈ Rg×1, and the length of R is p,

the UDTW algorithm can provide a reference

alignment matrix {I, q′, R,Q′}, Xinput, then ap-

plied into other variables’. Therefore, Xinput in

all flight recordings could be represented as equal-

length time series as same as the RA HAT ref-

erence. The specific algorithm can be viewed in

Algorithm 2 below.

Algorithm 2 Uniform Dynamic Time Warping

Input: Reference signal R, query signal Q, and

new reference indices I = {1, 2, . . . , p}, i =

0

1: Apply standard DTW to align R and Q, and

obtain their respective indices r and q

2: Obtain new indices a = I ∩ rc

3: repeat

4: Search forward to find the nearest reference

index rs to ai and its corresponding query

index qs to rs
5: Update i = i+ 1

6: until i = |a|
7: Obtain warped query indices q′ by merging q

and qs, and order q′ according to the corre-

sponding indices in I .

Output: Warped query signal Q′ = Q[q′] and its

respective indices q′

Note: rc denotes the complement of set r.

Fig. 2. Variable-length Time Series in Precursor Min-
ing Phase

5. Experiment and Discussion

In this study, the datasets are collected from en-

hanced aircraft flight recorders (EAFR) of re-

gional aircraft. The datasets contain 84 available

commercial regional flights and each flight has

3056 variables sampled at 1 Hz. These variables

include the states, position, and orientation of

airplanes, data from Inertial Measurement Units

(IMUs), configurations related to flaps, gears,

and brakes, system status, engine parameters, and

weather conditions. Fig. 2 represents 6 cases in

PMP in terms of ratio altitude as an example, 3

for adverse events of unstable approach in red

colors and 3 for nominal events of stable approach

in blue colors. Flight data always have variable-

length time series, which need to be processed

before modeling.

Automated feature selection using statistical

methods consists of two steps, feature selection

based on Pearson’s correlation and FDR. As

shown in Algorithm 1, the number of variables

is cut into 1018 due to low standard deviations.

These variables may not be very informative or

discriminating in distinguishing between different

classes, which contribute less information to mod-

eling and should be removed ahead. Then, feature

selection based on correlation analysis helps to

reduce the variables’ dimension to 693. The cor-

relation matrix heatmaps in V ar and V arnew are

shown in Fig. 3, separately. In the heatmaps, col-



1718 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Fig. 3. Heatmaps of correlation matrix (a) before fea-
ture selection ; (b) after feature selection

ors approaching red indicate a positive correlation

between two variables, while colors approaching

blue indicate a negative correlation. The intensity

of the color reflects the strength of the correlation,

with darker colors indicating a stronger correla-

tion. As seen from Fig. 3(a), there exist many

highly correlated variables whose colors are close

to red and blue. After applying a correlation-based

method for dimension reduction, the number of

variables was reduced by approximately 32 %,

from 1018 to 693. It also can be roughly judged

from the lower areas of red and blue colors in Fig.

3(b), compared to Fig. 3(a). Algorithm 1 achieves

a good performance in an initial dimension reduc-

tion by removing redundant variables with highly

correlated to others.

In the following, we calculate each variable’s

FDR and obtain cumulative FDR to select a fea-

ture subset according to a specific cumulative

FDR threshold. Fig. 4 shows the number of se-

lected features among different cumulative FDR.

When the threshold was set to 95 %, almost half of

the variables were removed, leaving 349 variables

in the selected feature subset, as shown in Fig.

4. The selected feature subset is chosen based on

their FDR values, with those above the specified

cumulative FDR threshold retained in the subset.

Applying the FDR method in feature selection

is a simple and efficient way to greatly reduce

dimension by removing less informative features.

Furthermore, as previously mentioned, time se-

ries in PMP are always of variable lengths, as

depicted in Fig. 2. To address this issue, we pro-

pose a UDTW algorithm that converts variable-

Fig. 4. Num. of Selected Features VS Cumulative
FDR

Fig. 5. Results for (a) DTW and (b) UDTW

length time series into equal-length time series.

Results in Fig. 5 state that the UDTW offers equal-

length time series in the reference variable ratio

altitude. Moreover, the alignment matrix obtained

from UDTW, represented as dash curves, offers a

more concise matching approach with the warped

query being closer to the reference.

What’s more, Fig. 6 displays the local views

of the above alignment matrix between reference

indices and query indices for DTW and UDTW

in specific points: the first 10 and last 10 points.

UDTW ensures that each element in the reference

signal is matched with an index in the query sig-

nal. For instance, in Fig. 6(a), the fourth point in

reference indices is present in UDTW but missing

in DTW. Also, Fig. 7 indicates that UDTW con-

sistently exhibits smaller distances between the

reference and query signal in terms of ratio alti-

tude compared to DTW. In addition, the red points

in Fig. 7 indicate the distances for the adverse

samples, revealing that the distances in adverse

samples are relatively larger than those in nominal
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Fig. 6. Local views of alignment matrix between ref-
erence indices and query indices for (a) the first 10
points (b) the last 10 points

Fig. 7. Distance in all samples for (a) DTW and (b)
UDTW

samples, as anticipated. In summary, this idea in

UDTW not only achieves equal-length time series

but also results in smaller distances between their

reference and query signals.

6. Conclusion

This paper proposed a pipeline for preparing data

in precursor-based unstable approach events. The

pipeline generated lower-dimensional and equal-

length time series as inputs in PMP, along with

labeled outputs of unstable approach in UAIP.

The results obtained from the real flight recorder

demonstrated that the proposed data preparation

method effectively performed in providing stan-

dardized inputs and outputs for modeling. Further-

more, it could be applied to data preparation for

other adverse events occurring during take-off and

climb phases, where pilots must adhere to strict

standard tasks, similar to the context discussed in

this paper.

However, although the number of variables in a

flight is significantly reduced by automatic feature

selection and FDR analysis, this reduction is only

a rough statistical process and remains indepen-

dent of further modeling. Thus, it is necessary

to fine-tune the variables in conjunction with the

modeling process to achieve a lower-dimensional

and more comprehensive feature representation.
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