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Hydrogen is an emerging energy carrier with inherent environmental benefits. It has the potential to decarbonize
industrial applications that require high-grade heat. In addition, hydrogen allows centralized clean energy production
and distribution to remote end-use sites. For a smooth transition to hydrogen technologies, it is important to
guarantee a safe and reliable distribution system. Hydrogen could be transported through the existing widespread
pipeline network. Nevertheless, most pipeline steels were not designed for hydrogen service and are prone to
hydrogen-induced degradation, which could result in sudden component failures and undesired releases with severe
consequences. Hydrogen embrittlement depends on the interplay of three factors, i.e., the mechanical loading, the
operating environment, and the material properties. The synergistic interaction of these parameters has significant
safety implications. This study introduces a machine learning approach to evaluate the role of these factors in
the occurrence of hydrogen-induced damages. Several pipeline steels have been assessed for embrittlement under
different environmental and loading conditions. An extensive database has been created, and a decision tree model
has been trained to predict the hydrogen embrittlement of materials. The main advantages of this model are its
“white box” nature and simple interpretability. This artificial intelligence approach can ensure the safe application
of hydrogen systems and allow advancements in inspection planning and predictive maintenance.
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1. Introduction

The need to decarbonize the energy sector de-

mands extensive renewable energy production and

its widespread utilization. However, the intermit-

tent supply and the management of surplus energy

represent significant setbacks for a renewable-

based global energy landscape. In this scenario,

hydrogen is emerging as a potentially clean and

sustainable energy carrier. In 2021, hydrogen pro-

duction capacity was 500 MW, and it is expected

to reach 240 GW by 2030. The growing demand

will require large-scale centralized production

and extensive distribution networks. The ongoing

global projects aim at exporting 12 Mt of hy-

drogen per year by 2030 (IEA, 2022). Hydrogen

could be transported through the existing pipelines

for natural gas, taking advantage of this capillary

network. Despite this, the inherent properties of

hydrogen can degrade pipeline steels through hy-

drogen embrittlement (HE) (Wang et al., 2021).

Atomic hydrogen tends to penetrate the metal lat-

tice of steels, deteriorate their mechanical prop-

erties, and induce cracking in otherwise high-

performance materials, thus resulting in undesired
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releases with severe consequences. This issue can

be mitigated through risk-informed inspection and

maintenance planning (Campari et al., 2022).

HE results from the synerigistc interaction be-

tween mechanical parameters (residual and ap-

plied stress, strain rate, etc.), operating envi-

ronment (temperature, pressure, hydrogen purity,

etc.), and material factors (microstructure, com-

position, presence of welds, etc.) (Campari et al.,

2023). Several publications analyze the influenc-

ing factors for HE in pipeline steels. Despite these

studies, three research questions arise: how do

loading conditions, operating environment, and

material properties interact to determine HE mag-

nitude in pipeline steels? What parameters are

more significant for the HE susceptibility of mate-

rials? How can machine learning allow the inves-

tigation of this synergistic interplay, thus facilitat-

ing maintenance planning of equipment operating

in gaseous hydrogen environments?

This study aims to fill this gap in knowledge

by evaluating the impact of various environmen-

tal, material, and mechanical factors on the oc-

currence of hydrogen-induced damages using a

machine learning (ML) approach. An extensive

database that collects the results of tensile tests

conducted in relevant hydrogenated environments

has been created to train and evaluate the ML

model. In the next section, fundamental knowl-

edge regarding HE in pipeline steel is briefly pro-

vided. Then, the methodology and the machine

learning model are explained. Finally, the main

findings are presented and critically discussed to

make recommendations for advancement in in-

spection planning and predictive maintenance of

hydrogen transport pipelines.

2. Hydrogen embrittlement in pipeline
steels

Pipeline steels consist of several steel grades,

which vary on microstructure, strength, alloying

elements’ content, and manufacturing process. H2

distribution via pipeline exposes steels to com-

pressed gaseous hydrogen from the inside and

to chemical reactions (associated with cathodic

protection) which produce atomic hydrogen from

the outside. Hydrogen atoms can enter the metal

lattice, thus affecting the material properties and

even inducing cracking. In particular, it can dif-

fuse through the steel and interact with grain

boundaries and structural defects, such as dislo-

cations and vacancies. These interactions tend to

facilitate the initiation of microcracks and enhance

their growth over time. For these reasons, steel

becomes more prone to failure and fracture when

exposed to hydrogen (Gangloff and Somerday,

2012). Figure 1 shows the simplified mechanism

of material degradation due to HE.

Fig. 1. Hydrogen embrittlement mechanism

Hydrogen has a low volumetric energy density

of 10.8 MJ/Nm3 (NIST, 2023), which imposes

storage and transport under high pressure. How-

ever, a high hydrogen partial pressure increases

the applied stress and triggers hydrogen-induced

degradation. Sievert’s law states that the solubility

of hydrogen in metals is proportional to the square

root of its partial pressure. In other words, the

total hydrogen concentration within the metal in-

creases with pressure (Campari et al., 2023). The

temperature has a mixed effect on HE suscepti-

bility. For most ferritic steels, HE is maximum

at around room temperature and diminishes as

the temperature rises or decreases. The likelihood

of hydrogen-induced cracking is higher because

hydrogen has higher diffusivity at room tempera-

ture than at cryogenic temperatures and remains

trapped for enough time to accumulate (unlike at

high temperature) (Lee, 2016).

In most cases, the use of high-strength steels

is not recommended for hydrogen application

as HE generally becomes more severe in high-

strength materials because of stress amplification

near defects (Somerday and San Marchi, 2008).
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Microstructure is also an important aspect in de-

termining hydrogen embrittlement susceptibility.

X70 and lower grades steels have longitudinal

bands of pearlitic-ferritic mix, while X80 and

higher grades steels have a fine-grained mixture

of ferritic-bainitic or ferritic-acicular ferritic mi-

crostructure. It is proven that the acicular ferritic

structure is more sensitive to HE than the ferritic-

pearlitic one because of the greater hydrogen dif-

fusivity (Pulvinage, 2021). Steel of Grade A and

B, and X42 tend to reach the saturation at hy-

drogen pressure ranging from 6.9 MPa to 13.8

MPa (San Marchi and Somerday, 2012), while

the saturation pressure of the higher grades re-

mains to be assessed. Steels with grade higher

than X80 have been developed for natural gas

transport in harsh environments. These pipelines

have thinner walls, contain down to one-third of

C, have higher weldability, thus meeting all the

design requirements. The welding process will

creates residual stresses and change in microstruc-

ture of the welded area and the heat-affected zone

(HAZ), eventually resulting in the formation of

brittle phases. The high-strength and low duc-

tility of martensite makes these microstructures

highly susceptible to HE (Thompson and Bern-

stein, 1977). The selection of the optimal proper-

ties for pipeline materials depends on their operat-

ing conditions. The American Petroleum Institute

has classified the steel grades for pipeline appli-

cation in the standard API 5L (2013), specifying

their minimum yield strength.

Finally, the chemical composition of the steel is

measured in terms of carbon equivalent content.

The correlation of Dearden-O’Neill, widely used

to compare plain carbon and carbon-manganese

steels, is given by Eq. 1.

CE = C +
Mn

6
+

Cr +Mo+ V

5
+

Ni+ Cu

15
(1)

According to European Industrial Gases Associa-

tion, for hydrogen applications, the CE should be

limited to 0.35 to avoid the formation of marten-

site during welding (EIGA, 2004). In addition,

San Marchi and Somerday (2007) suggested that

sulfur and phosphorous contents should be lower

than 0.01 and 0.015, respectively. In general,

the optimal combination of macro-mechanical

properties is obtained by balancing alloying el-

ements, and controlling the manufacturing pro-

cesses, grain refinement, and heat treatments.

3. Methodology

The methodology proposed to predict the HE ef-

fect in pipeline steels and to evaluate the main

susceptibility factors is divided into three steps,

i.e., the database creation and pre-processing, the

identification of the target attribute, and the train-

ing and evaluation of the ML classifier.

3.1. Database creation and
pre-processing

The database collects the results of tensile tests

conducted on pipeline steels. All these data have

been gathered from peer-reviewed journals and

publicly disclosed industrial reports, such as the

”Technical Reference for Hydrogen Compatibility

of Materials” (San Marchi and Somerday, 2012).

As first step presented in this work, in-situ slow-

strain rate tests (SSRT) with gaseous hydrogen

charging are the only experiments considered. The

original database was composed of 132 tests and

35 features, which relate to environmental condi-

tions, material properties, and mechanical loading

parameters. The missing values have been filled in

with the following assumptions:

• Ambient temperature is 22 ◦C;

• Strain rate equals to 0.0001 s−1;

• Stress concentration factor for notched

specimens equals to 5.5;

• Nominal chemical composition in

ASME B31.12 (2019) is assumed;

• Average yield and ultimate

tensile strengths are assumed according

to ASME B31.12

The features associated with hydrogen purity, the

presence of tungsten, and the presence of pre-

charging have not been deemed relevant since they

had the same value for each test. Hence, they have

been eliminated during the pre-processing phase.

Table 1 presents the structure of the final database.
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Table 1. Features and example categories of the database

Feature Type Unit Categories

Pressure Numerical MPa 3; 6.9; 7; 10; 12; etc.
Temperature Numerical ◦C 20; 22; 25; 40; etc.
Material ID Categorical X42; X52; X60; X80; X100; Grade A; Grade B; etc.
Fe content Numerical % 98.77; 98.29; 98.54; 98.13; etc.
Cr content Numerical % 0.038; 0; 0.058; 0.13; 0.07; etc.
Ni content Numerical % 0.016; 0.04; 0; 0.14; etc.
Mn content Numerical % 0.82; 1.31; 1.66; 1.68; etc.
Mo content Numerical % 0.01; 0.013; 0.31; 0.15; etc.
Nb content Numerical % 0.003; 0.012; 0.048; 0.062; etc.
Ti content Numerical % 0.004; 0.05; 0; 0.01; etc.
V content Numerical % 0.008; 0.04; 0.01; 0.09; etc.
Al content Numerical % 0.004; 0.012; 0.04; 0.03; etc.
Cu content Numerical % 0.022; 0.075; 0.31; 0.12; etc.
Si content Numerical % 0.014; 0.29; 0.03; 0.22; etc.
C content Numerical % 0.26; 0.113; 0.07; 0.05; etc.
Sn content Numerical % 0.005; 0.01; 0; etc.
Co content Numerical % 0.0045; 0; etc.
S content Numerical % 0.026; 0.001; 0.015; 0.01; etc.
N content Numerical % 0.004; 0; etc.
P content Numerical % 0.02; 0.019; 0.006; 0.013; etc.
Microstructure Categorical Ferritic; Bainitic; Pearlitic; etc.
Base metal / Weld / HAZ Categorical Base; Girth weld; Cross weld; Inter-critical HAZ; etc.
Yield strength Numerical MPa 626; 605; 551; 520; etc.
Ultimate tensile strength Numerical MPa 693; 946; 1027; 1251; etc.
Stress concentration factor Numerical 1; 2.1; 3.3; 5.5; etc.

Strain rate Numerical s−1 0.0001; 0.0003; 0.00016; etc.

3.2. Target identification

The Embrittlement Index (EI) and the Total Elon-

gation Loss (TEL) are two different indexes ob-

tained from tensile tests that allow quantifying the

susceptibility to hydrogen embrittlement of metal-

lic materials. This study uses the EI as the tar-

get attribute to evaluate the HE effect in pipeline

steels. EI is defined as the difference between

the reduced area at fracture obtained from SSRT

in gaseous H2 and in a reference environment,

divided by the reference reduced area.

EI =
RAref −RAH2

RAref
· 100 (2)

where RAref and RAH2
represent the reduced

area at fracture in a reference environment and

hydrogen, respectively. Air or inert gases (e.g., He

or Ar) can be used as a reference since they do not

interact with the steel. RA is defined as follows:

RA =
Ai −Af

Ai
(3)

where Ai and Af represent the initial and final

fracture areas, respectively.

The susceptibility value has been labelled into

two classes: ”High” and ”Low”, in compliance

with the classification provided in the report

NASA/TM-2016–218602 (Lee, 2016). The class

”High” (H) is defined by an EI higher than 50%

and comprehends materials not recommended for

hydrogen applications under the specified testing

conditions. On the other hand, the class ”Low” (L)

includes the tests that resulted in EI lower than

50%. The ”Low” susceptibility does not guarantee

the suitability of a material for hydrogen pipelines

under the specified operating conditions since

the H2 environment can degrade several other

mechanical properties, such as fracture tough-
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ness and fatigue performance. A complete evalua-

tion of hydrogen-induced degradation considering

different mechanical performances, especially in

presence of cracks, is required before employing

a material for H2 transport.

3.3. Machine learning simulation

A Decision Tree Classifier (DTC) has been trained

to predict HE susceptibility. The algorithm divides

the materials into two classes, depending on the

EI value. A classification model is used rather

than a regression because HE depends on several

other factors, such as internal defects and material

orientation during testing, that cannot be used to

draw general conclusions about the susceptibility

of a material. The training and evaluation process

is shown in Figure 2.

Fig. 2. Flow diagram of the Decision Tree Classifier

The database is divided into two sub-databases

in a ratio of 70:30 to train the algorithm and test

the model. The 70% dataset is used to create a de-

cision tree. This algorithm uses if-else conditions

to split the dataset into different classes. Each

internal node constitutes a test on an attribute,

each branch is the outcome of the test, and each

leaf represents a class label. For classification

problems, it uses either Entropy, Gini Index or

Information Gain metrics to determine the best

nodes. In any case, the objective is to reduce

the randomness and obtain more homogeneous

regions wherein datasets belong to similar clas-

sifications. Along with the development of split-

ting, the tree becomes complex and can develop

noise and causes overfitting of the tree. Hence,

the model can limit its prediction capability to the

training dataset, without being able to generalize

other unseen datasets. A forward pruning concept

is used to reduce this risk. It limits overfitting by

eliminating trees that have lower predictive power.

This can be controlled by limiting the maximum

depth of the decision tree and the minimum num-

ber of samples per decision space. Through sev-

eral splits, a flowchart-like structure is achieved.

It stops at a point where a further split is either

not possible or it meets the defined requirements

for classification (Dai et al., 2016). The remaining

30% dataset is used to evaluate the model. In this

study, the Orange Data Mining software has been

used to train and test the decision tree (Demšar

et al., 2013).

4. Results and discussion

Three evaluation metrics (i.e., accuracy, preci-

sion, and recall) have been calculated to assess

the performance of the DTC algorithm. Accuracy

represents the fraction of correct predictions and

is calculated using Eq. 4. Precision, calculated

through Eq. 5, represents the fraction of true pos-

itive predictions, and recall, obtained through Eq.

6, indicates the fraction of positive labels that are

correctly predicted (Juba and Le, 2019).

CA =
TP + TN

TP + TN + FP + FN
= 0.825 (4)

Precision =
TP

TP + FP
= 0.824 (5)

Recall =
TP

TP + FN
= 0.825 (6)

where TP and TN indicate the ”Low” suscepti-

bilities and the ”High” susceptibilities correctly

predicted, respectively, while FP represents the

”High” mislabeled as ”Low” and FN indicates

the ”Low” mislabeled as ”High”. The confusion

matrix for the DTC model is shown in Figure 3.
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Fig. 3. Confusion matrix for the Tree Classifier

Although 82.5% of the total tests are correctly

classified, it is important to emphasize that not all

incorrect predictions have the same safety impli-

cations. Any classification of materials that are

highly degraded by HE but are predicted to be

tolerably affected is more critical than vice-versa.

In this case, the wrong classification could lead

to an improper material selection, which would

increase the risk of failure in pipeline systems.

The features of the database are not equally

important for the classification process. Hence, the

two scoring methods have been used to rank the

features based on the amount of information they

provide and the influence they have in the automa-

tized decision-making process. The ten top-ranked

features are reported in Table 2, distinguishing

between the Information Gain and the Gini Index.

Table 2. Comparative rank scoring of features

Rank Information Gain Gini Index

1 Material ID Material ID
2 Mn content Mn content
3 Cu content Mo content
4 Mo content Cu content
5 P content P content
6 Pressure V content
7 Base/weld Pressure
8 V content Cr content
9 Cr content Base/weld
10 C content C content

The top ten features for classification are the

same regardless of the chosen scoring methods.

The first ranked feature is the Material ID. How-

ever, seven out of ten top-ranked features are re-

lated to the chemical composition of the material.

The contents of C, Mn, Cr, Mo, V, Cu, and Ni

determine the carbon equivalent content, which

strongly relates to the hydrogen compatibility of

a material. Among those elements, Ni is the only

one that does not appear among the ten top-ranked

features. Hence, the definition of the CE complies

with the significance of these features for the ten-

sile properties degradation in materials exposed

to hydrogen. After calculating the CE content for

all these materials and again classifying the HE

susceptibility based on this parameter, according

to the screening method proposed by San Marchi

and Somerday (2007), it has been found that the

CE content can be greater than 0.35, and still

being compatible for hydrogen applications (when

ranked uniquely with respect to hydrogen-induced

ductility loss). Similarly, the database indicates

that the limits in S content (lower than 0.01) and

P content (lower than 0.015) seem not to have sig-

nificant implications on hydrogen-metal compat-

ibility. Pressure is the only environmental factor

that is considered highly significant for HE sus-

ceptibility, and it is not surprising since pressure

is the driving force for hydrogen uptake into the

metal. The presence of welds or HAZs is another

highly relevant factor. The stress concentration

and the strain rate (i.e., the loading factors) are

in the eleventh and nineteenth positions, respec-

tively. This proves that a proper selection of mate-

rials for hydrogen applications has the potential to

reduce the magnitude of HE, thus minimizing the

risk of component failures.

The Decision Tree is shown in Figure 4. It

is composed of 29 nodes and 14 leaves. The

root node is the Material ID, while the leaf

nodes are the Strain rate, the Base/weld, the

Smooth/notched, the Cr content, the Ultimate ten-

sile strength, the Yield strength, the Pressure, the

C content, and again Material ID. According to the

DTC, smooth specimens of 42CrMo4, X42, X60,

X65, and X120 steels are less affected by HE. In

the case of notched specimens, a more complex

dependence on the Cr content, UTS, and strain

rate has been highlighted. The higher the UTS and

the lower the strain rate, the greater will be the

HE effect on tensile properties. On the other side,

Grade A, Grade B, X52, X70, X80, and X100

are generally more affected by HE. For these ma-
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Fig. 4. Structure of the Decision Tree Classifier

terials the combination of UTS lower than 668

MPa and YS lower than 490 results in ”Low”

susceptibility. Materials with higher YS can have

”Low” susceptibility if their operating pressure is

below 50 bar. In general, high-strength materials,

with P content greater than 0.008 %, exposed to

a pressure above 50 bar are severely degraded by

hydrogen.

From the analysis of the prediction, it turned

out that the algorithm has wrongly classified X52,

X65, X70, X80, and 42CrMo4 steels, while it

was accurate in predicting the HE susceptibility of

Grade A, Grade B, X42, X100, and X120 steels.

The reasons of these misclassifications can be

summarized as follows:

• Grade A, Grade B, X52, and X65 steels

have limited test data in comparison to

other materials and this lack of informa-

tion hinders the classification process;

• The wrongly classified X70 and X80

steels are tested in welded areas and

HAZs. Since the database contains only

one test for each type of weld the evalua-

tion is inherently unreliable;

• 42CrMo4 has been wrongly classified

because it has been pre-charged, thus in-

creasing the amount of hydrogen within

the metal lattice and making it more af-

fected by HE.

The dataset comprehends 54 ”High” and 78

”Low” labels. This fact indicates that, based on

this exemplified attempt, a significant amount of

pipeline materials would not be compatible with

hydrogen transport. The remaining steels need a

thorough evaluation of fracture properties and fa-

tigue performance before being used for H2 trans-

port. In addition, all these equipment items should

be properly inspected and maintained to monitor

their degradation over time and to preserve their

structural integrity and fitness-for-service.
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The performance of the classification model

proposed can be improved by increasing the

amount of data in the training dataset, especially

concerning tests on welded areas and HAZs. The

utilization of more complex and performing algo-

rithms, such as Random Forest, Gradient Boost-

ing Machine, or Artificial Neural Network, can

also improve the classification accuracy (Campari

et al., 2023).

5. Conclusions

A machine learning approach has been used to

evaluate the synergistic interplay of environmen-

tal, material, and loading factors on pipeline steels

and to classify them based on their HE susceptibil-

ity under certain operating conditions. A database

of tensile test results has been created and used to

train and evaluate a DTC model. The most impor-

tant influencing factors have been examined and

ranked based on the impact on hydrogen-induced

degradation of mechanical properties. This ap-

proach showed potential in providing better un-

derstanding of the complex interaction between

these factors. The results may hold significant

implications for identifying proper pipeline steels

for hydrogen applications. These findings can be

helpful in designing new hydrogen-specific equip-

ment but also in planning risk-informed inspection

and maintenance activities in the existing pipeline

infrastructure. The ML algorithm has proven to

be reliable in predicting the HE severity (with

82.5% accuracy), despite the limited number of

experimental tests available. However, the future

development of more extensive datasets and the

adoption of more sophisticated algorithms will be

considered to increase the classification perfor-

mance.

Acknowledgement

This work was undertaken as a part of the research
project SH2IFT - 2 (”Safe Hydrogen Fuel Handling and
Use for Efficient Implementation 2”), and the authors
would like to acknowledge the financial support of the
Research Council of Norway (Grant No. 327009).

References
API (2013). API 5L: Specification for Line Pipe.

ASME (2019). ASME B31.12 – Hydrogen Piping and
Pipelines.

Campari, A., M. Darabi, A. Alvaro, F. Ustolin, and
N. Paltrinieri (2023). A machine learning approach
to predict the materials’ susceptibility to hydrogen
embrittlement. Chem. Eng. Trans..

Campari, A., M. Darabi, F. Ustolin, A. Alvaro, and
N. Paltrinieri (2022). Applicability of risk-based
inspection methodology to hydrogen technologies: A
preliminary review of the existing standards. Pro-
ceedings of the 32nd European Safety and Reliability
Conference (ESREL 2022).

Campari, A., F. Ustolin, A. Alvaro, and N. Paltrinieri
(2023). A review on hydrogen embrittlement and
risk-based inspection of hydrogen technologies. Int.
J. Hydrog. Energy 47.

Dai, Q., C. Zhang, and H. Wu (2016). Research of
decision tree classification algorithm in data mining.
Int. J. Database Theory Appl. 9.
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