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In this work, we use Finite State Machine (FSM) and Cell Transmission Model (CTM) for the analysis of a road 
transportation network travelled by both Internal Combustion Vehicles (ICVs) and Electric Vehicles (EVs). The 
application to a realistic network shows that FSM catches better than CTM the traffic volume changes when 
accidents occur, but paying the price of a larger computational cost. CTM, instead, averages the vehicles motion, 
thus somehow overlooking traffic congestions and travel time delays that would result in extra energy consumptions 
and EVs charging demand. 
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1. Introduction 
Single-vehicle and flow-vehicle models have been 
proposed to describe vehicle motion in a road 
network (Anderson, and Nair, 2019), (Mu, et al., 
2014).  

Single-vehicle models are typically based on 
queuing theory to capture the driving patterns of 
individual vehicles in the system (Anderson, and 
Nair, 2019).  Flow-vehicle models take a broader 
perspective than single-vehicle ones, treating 
vehicles as a collective flow (Mu, et al., 2014), 
(Wang, et. al., 2019).  To name few examples of 
single-vehicle models, (Mu, et al., 2014) presented 
an Origin-Destination (O-D) model combined with 
Monte Carlo simulation for estimating the Electric 
Vehicle (EVs) charging load within a Spatial-
Temporal Model (STM) framework; (Tang, et. al., 
2016) analysed how EVs mobility impacts on the 
characteristics of a power network (in terms of 
Level of Congestion (LoC), Nodal Voltage 
Deviation (NVD) and Energy Loss Rate (ELR)); 
(Hou, et. al., 2016) proposed a rectangular 
coordinate road model for simulating EV motion 
that, in combination with a bidirectional charging 
control strategy, is used to assess the reliability of 
an integrated road-power infrastructure; 

(Anderson, and Nair, 2019) utilized FSM to model 
EV motion on transport networks to optimally 
schedule the charging of long-range batteries. 

Flow-vehicle models describe vehicles motion 
based on an “integral” perspective (Mu, et al., 
2014), (Wang, et. al., 2019), (Sun, et. al., 2018). 
They can be classified in Deterministic Fluid 
Dynamic Models (DFDMs), Static User 
Equilibrium Models (SUEMs) and Cell 
Transmission Models (CTMs). For example, (Bae, 
and Kwasinski, 2011) used a DFDM based on the 
conservation equation of traffic flow for assessing 
charging demand in charging stations; (Chen, et. 
al., 2020) used a SUEM for the optimal design of 
charging station location and capacities; (Wang, et. 
al., 2018) proposed a SUEM to simulate realistic 
traffic flows in transportation networks; (He, et. al., 
2014) proposed a SUEM that considers also 
travellers recharging decisions, and captures the 
impact of recharging time and anxiety of drivers on 
travel time and route selection; (Xie and Jiang, 
2016) developed a SUEM for modelling congested 
regional transportation networks where recharging 
or battery-swapping stations for EVs are scarce; 
(Wang, et. al., 2018) considered a CTM for 
modelling the interactions between a time-varying 
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urban transportation system and a power 
distribution system; (Wang, et. al., 2019) modelled 
a highway traffic flow by a CTM, to evaluate the 
spatial-temporal EV charging loads in different 
areas of an electrified transportation system.  

In this study, we consider Finite State Machine 
(FSM) and Cell Transmission Model (CTM) as 
representative of single-vehicle and flow-vehicle 
models, respectively, for the analysis of a road 
transport network travelled by both of EVs and 
Internal Combustion Vehicles (ICVs), and subject 
to traffic congestion because of random incidents.  

The rest of the paper is organized as follows. 
Section 2 briefly describes the FSM and CTM 
models. Section 3 presents the case study of a 
realistic road network; Section 4 presents the 
results of the study. Finally, Section 5 concludes 
the paper.  

2. Vehicles Flow Modelling Approaches  
In this Section, FSM and CTM are tailored for 
capturing the motion of vehicles on a road transport 
network, under both nominal conditions and 
disruption scenarios. 

The road transport network is modelled as a 
connected graph  (Anderson, and Nair, 
2019), where  is a non-empty 
set of H nodes,  is a matrix whose element  is 
the edge (road) length connecting the i-th and the j-
th nodes (i=1, …, H and j=1, …, H, with ),  is 
a weighted adjacency matrix, whose element  is 
the number of lanes connecting the i-th and the j-th 
nodes, and  is the capacity matrix, whose element 

 is the maximum number of vehicles which can 
drive between the i-th and the j-th nodes at the same 
time. We consider that the road network is 
composed of a set of R road sections Я = (1, 2, …, 
Ʀ, …, R), where a set of X charging stations CS = 
( , , …, , …, ) are present.  

Power feeding the charging stations is modelled 
as a single-phase AC power flow that solves the 
dispatchment problem for an undirected graph 
Q(W, Z) comprised of a set of buses W=

, each one feeding a charging station  
and a set of branches Z (for both FSM and CTM). 
In FSM, power demand  at the x-th 
charging station  at time t, is calculated from 
Equation (1): 

           (1) 
where  is the power demand of the r-th EV 
being charged at time t, and k is the total number of 
EVs charged in . In CTM, the charging 

demands are approximated by the following 
linear function:  

Ʀ             (2) 
where Ʀ   is the number of vehicles contained 
in cell  of Ʀ-th road section,  is the EV 
penetration i.e., the portion of EVs on the road 
transport network,  is the probability of EV 
charging at time t and P is the charging power.  
The power demand  of the entire system at 
time t is calculated as:   

 
 
2.1. Finite State Machine    
FSM models the process of state transition in time 
of a system (Monteiro, and Oliveira, 1998). For 
modelling EVs and ICVs motion on a road 
network, a FSM with six states S= { , , , , , 

} (Fig. 1) is here taken from (Naseh Moghanlou, 
et. al., 2021). Besides the initial “start-up” state  
and “shut-down” state , we consider a “driving” 
state  and a “queuing for traffic” state , a 
“charging” or “refilling” state  and a “queuing 
for charging” or “queuing for refilling” state . In 
general terms, the generic r-th EV, , or p-th 
ICV, , starts the trip with an entrance State of 
Charge (SoC), , or Fuel Level (FL), 

, at its entrance time , and is 
found at time t in the edge i,j ( ) with state  
according to the transition rule , which 
depends on: 
  

where Ʀ  is the number of vehicles 
occupying the edge  of road Ʀ at time t, 

 is the SoC or FL of 
 at time t, and  is 

the number of the EVs or ICVs which are charging 
or refilling in the x-th charging station  or ξ-th 
gas station  at time t. In practical words, we 
model the motion dynamics so that when a generic 

 of the pool of  ICVs 
starts a trip, it switches from state  to state  if 
the number of vehicles occupying the next edge at 
time t, Ʀ , is smaller than the edge 
maximum capacity of vehicles ; whereas, 
it switches from  to , if  Ʀ  is equal to 

, i.e., the edge has reached its maximum 
capacity and cannot accommodate other vehicles. 
As  moves forward on edge i,j where 
the charging station  or gas station  is 
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located, if  is at the lowest 
critical value,  for EVs or  for 
non-commercial ICVs or  for 
commercial ICVs, it may switch to state  in order 
to recharge or refill, unless the number of EVs 
charging in  or the number of ICVs 
refilling in  at time t is equal to the 
maximum capacity  of vehicles for that charging 
station,  or gas station, : in this case, 

 switches to state  and only later 
switches to state  to recharge or refill when 

 or . Besides taking 
into account the diversity of EVs battery type , 
we also consider the driver charging attitude, 

, which describes the fact that each EV 
driver has a specific preference value of SoC at 
which to recharge. Upon charging or refilling 
completion,  switches to state  and 
continues the trip, switching among its states 
according to the transition rules  and 
finally reaching the destination node at which time 
it switches to state . In synthesis, the states 
transition rules  for the r-th EV at time t, 
are formulated as: 

 

 

Also, for each , the SoC can be evaluated in 
time as described by Equation (5), making explicit 
the dependence of the  on the sequence from 
start-up state  to shut-down state :  

 

where  and  are the power absorbed while 
driving and queuing for traffic, respectively, P is 
the charging power and T is the travel time interval.  

The vehicles flow, at each time t is, thus, 
evaluated by collecting the number of EVs and 
ICVs, Ʀ , passing through (or stopping at) 
each node i, edge i,j, charging station  and gas 
station , along with the following information:  

� ID of the vehicle ,  
� Entrance time of ICVs and EVs into the road 

transport network,  and , respectively 
� EVs entrance SoC,  
� ICVs entrance FL,  

� Drivers charging attitude,   
� SoC profile,  
� Travel time for each vehicle, , .  
 

 
Fig. 1. FSM for EVs or ICVs  

This allows collecting trajectories (i.e., time 
series) of travelled nodes and states ( , , , , 

, ) for each vehicle  and , traffic 
volume Ʀ , , , , 

 for each edge i,j, charging station  and 
gas station . The output of such multi-
dimensional time series is the main value of the 
FSM with respect to flow-vehicle models that, 
instead, lump all this information in integral flow-
related measures (Naseh Moghanlou, et. al., 2021).  
 
2.2. Cell Transmission Model   
The Cell Transmission Model (CTM) is widely 
used for modelling traffic flow in transportation 
systems (Wang, et. al., 2019). CTM considers the 
dynamics of traffic flow by modelling the 
movement of vehicles between adjacent cells 

, that are homogeneous 
sections of a network Я, where each  represents 
a specific segment of the road, whose  length  
is determined based on the average distance 
travelled by a typical vehicle in normal condition 
in one generic time interval  (similarly to the links 

of the graph in FSM). The state of the system 
at each time t is defined as the number Ʀ  of 
vehicles contained in the cell . The CTM 
reasoning is based on an intuitive balance 
equation, i.e., the number of vehicles in a cell at 
time t is equal to the sum of the number of 
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vehicles occupying it, plus the number of those 
incoming, minus those outgoing (Equation (6)):  

 

where  and  denote the set of 
predecessor and  successor cells of cell ,  
and  represent the  number of vehicles 
flowing from cell k to cell i (i.e., incoming) and 
from  cell i to cell j (i.e., outgoing) at time t, 
respectively. Depending on the type of cells 
(ordinary cell ( ), merging cell ( ), 
diverging cell ( ), source cell ( )  and sink 
cell ( )), the updating rules are as  follows 
(Daganzo, 1994), (Daganzo, 1995): 
1) Ordinary Cell for an i-th cell that has only one 
successor cell (| |=1) and one predecessor cell 
(| |=1), the incoming and outgoing flows at 
time t are, respectively: 

 
 

where  and  are the maximum allowed 
outgoing and incoming flows:  

 ( ) 

   

and , , ω and  are the maximum 
number of vehicles that can occupy , the 
maximum number of incoming and outgoing 
vehicles of , the backward wave speed, which 
is the speed with which disturbances propagate 
backward when traffic is congested, and the 
constant speed, respectively. 
2) Merging Cell: for an i-th cell with two (or more) 
predecessor cells (| | ≥ 2) and one successor 
cell (| | = 1), the outgoing flow  
follows Equation (8), and the incoming flow 

 results from the solution of the 
maximization problem:  

 

subject to the constraints: 

 

where the first equation states that the flow from 
the predecessor cell is constrained by its sending 
capacity, whereas the second equation states that 
the total incoming flows for all the predecessor 
cells should be lower than the receiving capacity 
of cell i. 

3) Diverging Cell: for an i-th cell with one 
predecessor cell (| | = 1) and two (or more) 
successor cells ( ), the incoming flow  
of the diverging cell follows Equation (7) and the 
outgoing flow  results from the solution of 
the maximization problem:  

 

subject to the constraints: 

 

It is worth mentioning that the problem cannot 
be solved by a unique outgoing flow of a 
diverging cell, unless the turning parameter 

 is set to determine the rate at 
each time step. Equation (14) can be rewritten as 
follows

          (15) 

4) Source and Sink Cells: the boundary conditions 
in the model are determined by the states of the sink 
(  and source  cells, as well as the initial 
values of all cells. Sink cells have unlimited 
capacity i.e.,  and can accept an 
unrestricted number of vehicles, with the incoming 
flow depending on the state of the predecessor cell. 
Source cells also have unlimited capacity i.e., 

 (typically following a user defined hourly 
pattern of vehicles flow), but their outgoing flow is 
finite, meaning that they can generate a specific 
amount of flow influenced by the successor cell 
characteristics ( .  

2.1.3. Nominal Conditions Scenario 
The nominal daily traffic conditions patterns are 
modelled as follow. In FMS, each vehicle, whether 
it is an EV or an ICV, begins its trip at the Origin 
(O) node with a certain state of charge (SoC) for 
EVs or fuel level (FL) for ICVs. During the 
journey, at each time interval T, the vehicle 
consumes power or fuel. When the vehicle passes 
by a charging station or gas station, it recharges or 
refills if the SoC or FL reaches a critical level that 
would prevent it from reaching the next charging 
station or gas station. Alternatively, when the 
vehicle reaches an intersection, it selects one of the 
available roads based on a driver turning rate 
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parameter . This travel cycle continues until the 
vehicle reaches the Destination (D). 

In CTM, a fleet of the vehicles begins the trip at 
the Source cell and travels along the cells based on 
the CTM model. The approximation of the 
charging demands of EVs at a specific charging 
station is based on the number of EVs passing 
through, the EV penetration, the charging 
probability and the average rated charging power. 
Alternatively, when the vehicles reach an 
intersection, they select one of the available roads 
based on a turning parameter . This travel cycle 
continues until the vehicle reaches the sink cells. 

2.1.4. Disruption Scenarios 
Traffic congestion randomly occurs at a random 
edge or cell of the road network for a random 
duration ρ (hereafter also called severity), during 
which vehicles are temporarily trapped in a traffic 
jam. This is due to the occurrence of an incident 
whose key characteristics are the occurrence time, 
road capacity reduction, and duration. When an 
incident occurs, the road capacity is immediately 
reduced, potentially leading to traffic congestion if 
demand exceeds capacity. Once the incident is 
cleared, the road capacity recovers, and traffic 
conditions gradually return to normal. 

In FSM, when a generic vehicle  or  is 
stuck in the traffic jam (i.e., “queuing for traffic” 
state), it consumes  or  or  until it can 
move forward to the following road network node; 
when the vehicle reaches an intersection, the rule 
adopted for the “next road selection” is that the  
or  always takes the less crowded path, 
resulting in a shorter or longer path than the path 
travelled in the nominal conditions scenario. The 
charging or refilling logic is the same adopted for 
the nominal conditions travel.  

3. Case Study  
The case study used in (Wang, et. al., 2019) and 
(Naseh Moghanlou, et. al., 2021) is here adapted to 
the objective of the current study. The road 
transportation network is a comprehensive sample 
of a part of the national highway system of New 
York State, whose topological structure consists of 
R=11 road sections. The road network is mapped 
into the homogeneous graph G as shown in Fig. 2 
(FSM) and the cells cl shown in Fig. 3 (CTM). In 
both cases, solid lines denote a direct connection 
between two nodes or cells, whereas dashed lines 

represent that some intermediate nodes or cells are 
omitted (for clarity sake). Vehicles can enter the 
road network either from node (or source cell) 1 or 
from node (or source cell) 22, and exit either from 
node (or sink cell) 203 or from node (or sink cell) 
224. Along their routes, vehicles are modelled to 
drive at a constant speed of U = 65 mph.  

 

Fig. 2. Graph of the test road network (Naseh 
Moghanlou, et. al., 2021) 

 
Fig. 3. Cells of test road network (Wang, et. al., 2019).  

The nominal condition hourly traffic pattern 
adopted in is the one widely used as a benchmark 
traffic assignment model (Wang, et. al., 2019), 
(Naseh Moghanlou, et. al., 2021), and plotted in 
Fig. 4.  

 
Fig. 4. Annual Average Daily Traffic of the roads 

To compare FSM and CTM, and their sensitivity 
to the penetration of EVs in the road transportation 
network, different EV penetration levels (

) are considered. Table I 
summarizes the values of the parameters taken for 
the road transport network modelling.  

In FSM, each EV is characterized by:   
: a random  following a truncated Normal 

distribution ℕ(24,10), in the range of [ , ] 
(kWh) (www.car-specs.net/ev-database.org), 
(Su, et. al., 2011).  
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: a random SoC uniformly 
distributed within the range of battery capacity .  

: a random truncated Normal distribution 
ℕ , in the range of , ] (kWh), 
corresponding to  distribution.  

Charging time : a linear relationship between 
the charging time  and the energy stored in the 
battery , as described in Equation (16), 
(assuming that the drivers charging attitude  
and the charging power P of EVs are known 
(Wang, et. al., 2022)):  

 
: 7 kWh, as the minimum SoC to 

reach the next charging station .  
: 17.38 kW, the driving power of EVs.  
: 6 kW, the queuing for traffic power of EVs. 

In CTM, the average capacity of EVs battery is 
assumed to be 24 kWh. For simplicity, the 
charging probability is assumed to be constant 
and .  

It is assumed that a charging station (of 
unlimited maximum capacity) is located in the 
middle of each road section (X=11) providing the 
required power demand (Equation (3)), the 
charging power of EVs (P) is assumed equal to 75 
kW.  

TABLE I Parameters of the network 
Parameters Symbols Values 

Number of nodes H 224 
Edge length (mi)  1.0833 

Maximum number of vehicles 
per lane in the edge i,j  200 

Number of cells H 224 
cell length (mi)  1.0833 

Maximum number of vehicles 
per lane in the cell i  200 

Maximum flow vehicle/min/lane)  40 
Turning parameter φ 0.5 

Travel time interval (min) T 1 

4. Results  
4.1 Nominal Conditions Scenario  

The results of the application of FSM and CTM, 
to the nominal conditions of traffic flow from 
00:00 to 08:00 are first described. The number of 
vehicles per edges and cells are plotted in Figs. 5 
and 6, respectively. FSM considers individual 
vehicles, rather than the overall flow of vehicles, 
and it is shown to have more accurate results than 
CTM and to be able to capture changes in traffic 
volume. However, the running time of FSM is 

more than five times that of CTM. For instance, the 
running time of FSM for the nominal scenario with 
percentage of EVs α=50% is 40 minutes whereas 
for the CTM, it is equal to 7 minutes on a CentOS 
(Intel(R) Xeon(R) CPU E5-2640 @2.40GHz and 
17GB). This can become particularly relevant 
when the analysis is aimed at identifying critical 
roads where traffic congestion is more likely to 
occur which requires running several scenarios 
with varying parameters.  

As an example of analysis, let us consider the 
changes in the power demand of the road network 
from 00:00 to 24:00 with different percentage of 
EVs (α=25%, 50%, and 75%). The results, in Fig. 
7, illustrate the power demand when the CTM and 
FSM are used: since CTM provides an averaged 
motion of vehicles, it fails to capture the impact of 
traffic congestions, travel time delays and extra 
energy demand (that is indeed underestimated by 
CTM).  

 

 
Fig. 5. Nominal condition of traffic flow with FSM: 
number of vehicles per edge of the transportation 

network from 8:00 to 16:00 

 
Fig. 6. Nominal condition of traffic flow with CTM: 

number of vehicles per cell of the transportation 
network from 8:00 to 16:00 
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Fig. 7. Power demand when FSM and CTM are used to 

model nominal conditions under different EVs 
percentage α  

4.1 Disruption Scenarios  
Without loss of generality, we consider two 
disruption scenarios with severity  of 1 hour, and 
2 hours, respectively. Both disruption scenarios 
are due to an incident occurring in edge 49,50 
(cell 49) of road 3.  In Fig. 8, the vehicles running 

per edge and  per lane Ʀ  obtained by FSM are 
plotted on a time span from 08:00 to 16:00 hours, 
for the cases of (a) normal conditions (b) =1 hour 
disruption occurring at time 9:00 (i.e., rush time), 
(c) =2 hours disruption occurring at time 9:00. 

In Fig. 9, the vehicles per cell and per lane Ʀ  
estimated by CTM are plotted on a time span from 
08:00 to 16:00 hours, for the cases of (a) normal 
conditions (b) =1 hour disruption occurring at 
time 9:00 (i.e., rush time), (c) =2 hours 
disruption occurring at time 9:00. Also in this 
case, FSM outperforms CTM in completely 
capturing changes in the traffic volume. However, 
FSM exhibits longer running times compared to 
CTM. For instance, the running time of FSM for 
ρ=1 with α=50% is 54 minutes whereas for CTM it 
is equal to 10 minutes, on a CentOS (Intel(R) 
Xeon(R) CPU E5-2640 @2.40GHz and 17GB).  

Fig. 10 and Fig. 11 show additional insights 
provided by FSM that CTM does not give: the 
Probability Density Function (PDF) of vehicles 
travel time and delays, respectively, considering 
various levels of EVs percentage (α=25%, 50% 
and 75%). Again, it is shown that the FSM model 
captures the distribution of travel time, although 
with a higher computational effort. In contrast, 
CTM can only provide cumulative travel time 
information for the vehicles. 

 
Fig. 8. Number of vehicles per lane estimated by FSM, 
in each edge of the transportation network from 8:00 

to 16:00 

 
Fig. 9. Number of vehicles per lane estimated by 

CTM, in each cell of the transportation network from 
8:00 to 16:00 

 
Fig. 10. PDF of vehicles travel time for nominal 

conditions and the considered disruption scenarios 
(using FSM) 
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Fig. 11. PDF of vehicles delay due to the considered 

disruption scenarios (using FSM) 

5. Conclusion  
In this paper, we investigate the use of FSM and 
CTM for the analysis of road transport networks 
characterized by a mixture of EVs and ICVs. A 
realistic case study is considered under nominal 
conditions and disruption scenarios, for different 
levels of EVs percentage (α=25% 50%  and 75%). 

FSM allows modelling individual vehicles 
separately, thus, capturing their unique 
interactions and characteristics such as route 
choices, traffic congestion, and travel time delays. 
This allows providing a detailed analysis of 
individual vehicles motion and effectively capture 
changes in traffic flow, but at the expenses of long 
computation times. On the other hand, CTM 
provides an "integral" perspective on the vehicles 
motion by modelling the collective motion of 
vehicles within the road transportation system.  
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