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When virtually coupled trains are applied in the real world, there is a need to consider the associated risks stemming
from unknown and unforeseen situations. This then requires decision-making systems of virtual coupling to be able
to make appropriate decisions autonomously in the face of environmental and behavioral uncertainties and, more
importantly, be able to perform appropriate risk assessments prior to decision-making. We provide an overview
of risk assessment methodologies for virtually coupled trains decision-making in terms of both quantitative and
qualitative analysis, respectively. Among them, the quantitative analysis methods can be further divided into three
parts: risk identification, risk measurement and risk reasoning. By comparing the differences of each method, we
find that the probabilistic approach can better handle the uncertainty of the input information of the decision-making
system. Finally, we propose future research directions.
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1. Introduction

Railway transportation, as a safety-critical system,

requires that trains are safe in their own right in

the environment in which the trains operate, so

the trains must be able to reliably predict and

assess collision probability in any given situation.

To achieve this, trains must have a reliable, robust

and comprehensive risk assessment (RA) method-

ology.

Traditional fixed group trains face the prob-

lem of non-synergy between passenger demand

and capacity. In order to overcome the problems

faced by traditional fixed grouping methods, flex-

ible grouping is developed to achieve the best

synergy between passenger demand and capacity.

Train formation operation is also known as Virtual

Coupling, and the trains are connected to each

other by train-to-train communication instead of

actual hooks, which enables them to combine and

operate together freely (Stickel et al., 2022).

According to the existing train operation con-

trol mode, the ground zone controller (ZC) gen-

erates movement authorization (MA) based on

the position information of the preceding train,

and the train develops its own speed control

strategy based on the MA. Unlike fixed block-

ing, absolute braking distance mode (ADBM) and

relative braking distance mode (RDBM), virtual

Coupling requires much lower spacing between

trains, and traditional safety protection methods

cannot be applied to virtual Coupling. Virtually

coupled trains should be autonomous and on-

demand, rather than just running on a fixed sched-

ule (Henke et al., 2008).

Unlike decision-making under determinism,

decision-making under uncertainty is probabilis-
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tically unknown and risky. A fundamental charac-

teristic of an agent is its ability to autonomously

perceive, act and learn in a dynamic uncertain

environment and to make decisions under uncer-

tainty. Therefore, in order to achieve autonomous

decision-making in for virtually coupled trains,

RA is necessary.

There is no uniform solution for RA and many

methods exist. Since the model of car-following

in a single lane is similar to the model of virtually

coupled trains, this paper also investigates the RA

method for car-following decision-making.

This paper is organized as follows: first, the

risks faced by virtually coupled trains of decision-

making are analyzed in section 2, and the method-

ologies of RA from quantitative and qualitative

perspectives are described in sections 3 and 4,

respectively. In section 5, we summarize and pro-

pose some possible research directions about these

RA methodologies.

2. Risks to Decision-making for
Virtually Coupled Trains

The virtually coupled trains must ensure a certain

level of safety in order to be accepted by society

and regulatory agencies. At the same time, train

operations must not be too conservative or the

requirements of short interval tracking cannot be

met. IRSE news a questions the safety of virtually

coupled trains, arguing that safety depends on a

variety of factors and requires more difficult safety

arguments considering aspects such as the de-

signed operating mode, the possibility of control

or mitigation measures, and that it cannot simply

be assumed that virtually coupled trains are less

safe than single trains. However, safety does not

mean risk-free. Möller (2012) proposed a theo-

retical definition of safety decision-making appli-

cable to a wide range of domains and systems,

defining safety as the reduction or minimization

of risk and cognitive uncertainty.

The input and output signals of virtually cou-

pled trains decision-making system are shown in

Figure 1. From the figure, it can be seen that the

ahttps://webinfo.uk/webdocssl/irse-kbase/ref-

viewer.aspx?refno=1882928268&document=itc%20report%2039%20train%20convoys%20and%20virtual%20coupling.pdf

key situational information includes:

• External environment information: obstacle,

weather, equipment status and status of the pre-

ceding train.

• Ego-train information: self status, number of

passengers and energy consumption.

• Human-prescribed information: pre-planned

operating diagrams.

During the train operation, there is uncer-

tainty in other information except for the human-

prescribed operation diagrams. High-speed trains

and heavy haul trains are located outdoors and

are more susceptible to weather. Obstacles refer

to objects on or near the tracks that are not part

of the railroad infrastructure, such as construction

workers, leftover tools and foreign objects that

encroach on the limits. Due to the limitations of

sensors, trains do not have a clear understanding

of their surroundings.

In short, there are random disturbances in the

external environment and uncertainties in the pa-

rameters of its own dynamic characteristics, thus

posing risks to the train. Decision-making for vir-

tually coupled trains needs to consider how to deal

with the risks caused by uncertainties and output

the correct decision-making information.

Several methods have been used for virtually
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coupled trains decision-making, such as model

predictive control (Vaquero-Serrano and Felez,

2023) and reinforcement learning (Wang et al.,

2021). However, many decision-making methods

do not adequately consider driving risks, and risk-

insensitive decision-making methods may lead to

unsafe train operations. Therefore, it is essential

to perform RA before decision-making.

After RA, general determinations can be made

and the decision-making module can be alerted

to future risks. However, these methods cannot

be used directly for autonomous decision-making,

so specialized decision-making modules are also

needed to determine the appropriate behavior (Xu

et al., 2020). Both RA and collision avoidance de-

cisions are essential modules in virtually coupled

trains.

In addition, there may be uncertainties in the

methods used for decision-making. In recent

years, with the development of artificial intelli-

gence (AI), intelligent perception technology and

intelligent control technology have been intro-

duced into the field of train operation control,

and a class of Intelligent Awareness-based Train

Driving Assistance System (IATDAS) has started

to emerge. This type of system makes the train

have the function of detecting the train, people or

other obstacles in front of them autonomously. At

the same time, however, should there be a safety

issue with the IATDAS system, it would poten-

tially cause a train operation accident. Therefore,

the model itself for decision-making using AI may

also be risky (Chia et al., 2022). However, the

risks present in the decision module itself are not

the subject of this paper, which focuses on the

risks of the input information.

3. Quantitative Methods

For quantitative RA, research tends to focus on

the following three areas: risk identification, risk

measurement, and risk reasoning.

3.1. Risk Identification

Risk identification refers to the prediction of other

traffic participants based on their trajectories to

determine whether they will have a collision risk

to ego-train. The ego-train can only detect infor-

mation such as the spatial state of the train and

obstacles around itself, and cannot detect their

future motion, making risk identification difficult.

The methods related to risk identification can be

divided into three categories: physics-based meth-

ods, maneuver-based methods, and interaction-

based methods (Lefèvre et al., 2014).

The physics-based approach derives the future

motion of the target train based on a dynamics

model or a kinematic model, and the identification

of potential risks is based on a motion model.

However, this approach is limited to short-term

motion prediction, since it considers only low-

level motion characteristics and does not consider

the execution of actions such as sudden accelera-

tion or deceleration.

For this reason, some scholars have introduced

a maneuver-based risk identification approach

(Lefèvre et al., 2014). This approach estimates

the most likely driving behavior to be performed

next based on the behavior that the target train in-

tends to perform, which in turn predicts the future

motion of the target train, and identifies potential

risks through the long-term motion predictions

derived from the behavior. Thus, this approach

provides a more reliable risk identification. The

interaction-based approach considers not only the

kinematic state of the target train, but also the in-

teraction between multiple trains, and analyzes the

game driving process between several trains based

on the driving behavior characteristics. These two

methods are more researched in road vehicles.

These two methods are less used in the rail trans-

portation field due to the need to develop opera-

tion diagram in advance to specify the trajectory

of trains.

3.2. Risk Measurement

Studies related to risk measurement often focus

on the selection of appropriate risk metrics to as-

sess potential risks in the operational environment,

such as time to collision (TTC), headway time

distance (THW), time to braking (TTS), and time

to reaction (TTR) (Dahl et al., 2019).

TTC is usually used in the longitudinal direc-

tion because it is time-based and combines speed

difference and spatial proximity. In general, the
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TTC is calculated as:

TTC =
Dr

vr
(1)

where Dr is the relative distance between the two

trains and vr is the relative speed between the

two trains and the speed of the preceding train is

smaller than that of the following train.

The calculation of TTC in the case of virtual

coupling is shown in Figure 2 and Figure 3, the

dashed line is the speed distance curve of train

braking. TTC does not consider the potential con-

flict area, i.e. the area where the future motion of

two trains will intersect, so it can only be used in

the case of section operation on the same track.

When running in the section, due to the special

nature of the tracks, only backward and forward

tracking of trains on the line exists, and no cross-

ing or yielding occurs, so the calculation of TTC

is relatively simple. However, when the train is

close to the station, the calculation of TTC will

be more complicated due to the possible intersec-

tion of tracks and the existence of intersection of

the running lines of two trains, which can form

a Y-shaped virtual coupling, and the calculation

of TTC needs to consider the conflict area, i.e.

turnout.

In the field of road traffic, a new concept

of responsibility-sensitive safety (RSS) (Shalev-

Shwartz et al., 2018) was proposed to derive

the collision avoidance condition for AV (Au-

tonomous Vehicle) using a reasonable estimation

of the worst-case scenario, where the minimum

longitudinal safety distance in the car-following

mode is the difference between the driving dis-

tance of the following vehicle and the braking

distance of the preceding vehicle. And it was

demonstrated that safety is ensured as long as the

distance between two vehicles is satisfied to be

greater than the formal safety distance. However,

some scholars believe that this condition is too

conservative and deterministic and has limitations.

In conclusion, these risk metrics are unable to

model the uncertainty of situational information

for display, and some scholars use probabilistic

risk metrics. Probabilistic risk metrics use prob-

abilities to describe spatio-temporal relationships

and risk levels.

Due to factors such as sensor errors, there is

uncertainty in the state perception of the train, and

the trajectory of the preceding train perceived by

the following train is not necessarily the actual

value. As shown in Figure 4, the shaded part

indicates the possible trajectory envelope of the

preceding train. Let Oi
k be an estimate of the

current position state of train i at moment tk, and

Si
k be the real position state of train i at moment

tk. If no data are available, then the probability

density function f(Si
k) of all possible position

state estimates of train i at moment tk can be

simply expressed by Gaussian distribution as

f
(
Si
k;O

i
k, P

S
k

)
=

1√
2πPS

k

e
− (S

i
k−Oi

k)
2

2PS
k (2)

where PS
k is the variance of the location state

estimate. Instead of assuming that the uncertainty

has a Gaussian distribution, if the data are avail-

able, a sampling-based approach is used, which

is capable of handling more general uncertainty

probability distributions (Cai et al., 2021).

Representing risk measures with probability

distributions can deal with uncertainties caused

by measurement noise or different behavioral pos-

sibilities of traffic participants. Some scholars

have proposed probabilistic TTC (PTTC) based

on TTC (Berthelot et al., 2012). When there is ad-

verse weather such as rain or fog, trains located in

outdoor track sections need to consider the effect

of different weather on perceptual performance

and braking performance when calculating PTTC.

Shin et al. (2019) use the number of collision cases

within the uncertainty boundary as a risk metric.

Besides PTTC, there are some other risk met-

rics. Majumdar and Pavone (2020) analyzed the

commonly used risk metrics and their properties

and concluded that the three risk metrics of con-

ditional value-at-risk (CVaR), expected cost, and

worst case satisfy six axioms of monotonicity,

translation invariance, positive homogeneity, sub-

additivity, comonotone additivity, and law invari-

ance, and are called coherent risk metrics. Figure 5

provides a graphical representation of the meaning

of CVaR, expected cost and worst-case scenario.
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The speed distance curve of 
the following train braking

Fig. 2. TTC calculation for virtually coupled trains at the section

The speed distance 
curve of the following 

train braking

Fig. 3. TTC calculation for virtually coupled trains at the station

Among them, CVaR is a widely used coherent

risk metric that has been used in various decision

problems. The risk CVaRα for a stochastic cost Z

with probability α is defined as

CVaRα(Z) :=
1

α

∫ 1

1−α

VaR1−τ (Z)dτ (3)

where VaRα refers to the value-at-risk with prob-

ability α. As shown in Figure 5, the shaded part

represents the tail part of the probability α and

CVaR is the expected value of the shaded part. The

use of CVaR to assess risk allows to dynamically

adjust the behavior of the whole system from

aggressive to highly conservative by changing a

single value, i.e., the level of risk probability (Fan

et al., 2021).

Bernhard et al. (2019) achieved safer decision-

making by designing corresponding risk quantifi-

cation models for uncertain movements of traf-

fic participants. CVaR is used to quantify uncer-

tainty in the environment based on an easily inter-

pretable risk metric. Chow et al. (2015) considered

a risk-sensitive MDP (Markov Decision Process)

with a CVaR optimization objective. CVaR MDPs

use a more general risk metric instead of the

optimization objective of cumulative returns in

traditional MDPs, allowing dynamic adjustment

of the level of risk willing to be accepted and

without ignoring tail events with low probability

of occurrence but high consequences.

3.3. Risk Reasoning

Risk reasoning means analyzing the level of risk

based on the results of risk measurement.

The methods associated with risk reasoning

can be divided into two categories: determinis-

tic methods and probabilistic methods. Under the

deterministic methods, the likelihood of collision

with a potential risk is calculated in the form of a

binary prediction based on predetermined thresh-

olds by means of a simplified motion prediction

model and various risk metrics. The deterministic

methods are binary predictions that estimate only

whether a potential collision will occur.

In addition to the binary approach, it is pos-

sible to classify the level of risk into specific

levels based on the value of the risk measurement,

similar to Risk Matrix. Li et al. (2021) classifies

the risk level into Dangerous, Attentive and Safe

and calculates the risk level based on the results

of TTC and TTS calculations. Li et al. (2018),

however, classifies the risk level into four classes

as red, orange, yellow and blue, and calculates the

risk level of the train based on the time to avoid

collision (TAC) and TTC.

In addition, the formal approach uses formal

verification based on rigorous mathematical def-

initions to precisely solve the reachable range of

unsafe states for trains in the current state at a

predetermined time, and thus assesses the safety

of various decision-making. Liu et al. (2022) pro-

posed a safety protection method for virtually cou-
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Fig. 5. Illustration of risk metrics

pled trains based on reachable sets.

Deterministic methods have been used for col-

lision avoidance systems in a variety of fields

because they are both simple and computationally

efficient. However, it does not take into account

the uncertainty of the input data. Therefore, some

scholars use probabilistic methods for risk reason-

ing, such as fuzzy logic, Bayesian networks, and

Dempster-Shafer (DS) theory.

So far, there are many methods to estimate

unknown parameters from data, and Bayesian

inference is a very popular method among the

many methods. One of the main advantages of

Bayesian methods is their ability to quantify un-

certainty while inferring (Gelman et al., 2013).

Thus, dynamic Bayesian networks (DBNs) can

easily adapt and modify the latest observations

and new knowledge and are widely used in risk

reasoning problems with dynamic uncertainty.

Noh (2019) and Noh and An (2018) used Bayesian

network models to combine conventional metrics

(e.g., TTC) into risk probability assessments.

DS theory has the ability of evidence fusion

and evidence inference to synthesize individual

risk terms based on the information available from

different sources, reducing the uncertainty in the

overall system security risk assessment (Kang

et al., 2020). Fuzzy logic is usually combined

with other methods to achieve risk reasoning by

combining the advantages of multiple methods

(Claussmann et al., 2018).

4. Qualitative Methods

Qualitative RA uses other known process tools

to identify root causes of potentially identified

failures, including hazard and operability studies

(HAZOP), failure mode effects and hazard analy-

sis (FMECA), fault tree analysis (FTA), and fail-

ure mode and effects analysis (FMEA).

In addition to the traditional approaches, there

are several systems models and methods that can

explain the effects of interactions in systems,

such as the Functional Resonance Accident Model

(FRAM) (Tian and Caponecchia, 2020) and Sys-

tem Theoretical Process Analysis (STPA) (Leve-

son, 2012). In the systems approach, safety is

considered as an urgent issue that should be an-

alyzed in the context of complex interactions of

socio-technical systems. Within the railroad sec-

tor, attempts have been made to use the system’s

analysis approach for risk analysis. Zhang et al.

(2021) used STPA for risk analysis of IRDAS to

identify risk factors.

Hao et al. (2020) used STPA for risk analysis of

virtually coupled trains to identify some potential

hazards that are difficult to detect by traditional

safety analysis methods, which helps to assist in

system safety decision-making.

With the rapid development of AI (especially

deep learning) in recent years, some scholars have

used AI methods for RA in addition to the quanti-

tative and qualitative methods mentioned above.

However, AI may learn unsafe behaviors that
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were not intentional to begin with. AI methods, if

used alone, may instead increase risk, especially

if developers lack an inherent understanding of

their use for risk analysis requirements. There-

fore, AI methods may require more real-time test-

ing and verification than classical methods such

as process-based, probability-based, and model-

based approaches (Chia et al., 2022).

5. Discussion and Conclusion

When deploying virtually coupled trains, an au-

tonomous system, in the real world, the associated

risks stemming from unknown and unforeseen sit-

uations need to be considered. This requires that

the autonomous system be able to make appro-

priate decisions in the face of environmental and

behavioral uncertainties and, more importantly,

to perform appropriate RA prior to the decision-

making.

RA can be broadly divided into quantitative

and qualitative analysis methods. Among them,

quantitative analysis includes risk identification,

risk measurement and risk reasoning. In addition,

RA can be classified as deterministic and prob-

abilistic. It is worth noting that sometimes the

boundaries between the different categories are

subtle, so overlap between the selected categories

is inevitable.

Using deterministic risk metrics can only assess

the threat risk of the current state, whose perfor-

mance will deteriorate if the driving behavior of

surrounding trains changes, and does not take into

account the uncertainty of the input information.

The use of probabilistic methods for display mod-

eling of uncertainty in situational information can

reduce potentially unknown and unsafe situations

and is the future direction of RA.
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