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The optical perception of surfaces manufactured with high precision is an important quality feature for most 

products. The respective manufacturing process is rather complex and depends on a variety of process parameters 

which have a direct impact on the surface shape and topography in the most cases.  

Surface-shapes, topographies and colorings are mostly measured using classical methods (roughness measuring 

device, gloss measuring device, spectrophotometer, computer tomography, or tactile coordinate measuring 

instruments). To improve the conventional methods of condition monitoring, in this case represented by the 

monitoring of the surface, a new image processing approach is needed to get a faster and more cost-effective analysis 

of manufactured surfaces. For this reason, different optical techniques based on images have been developed over 

the past years.  

In this paper, a framework for surface monitoring is outlined and discussed in detail according to every single step 

along the monitoring process. For this purpose, the study differentiates between the application of the descriptive 

statistics as well as the application of artificial intelligence. Both applications are mainly based on the same data 

sources, though on different sample sizes and provide answers to differing questions that often complement each 

other. 
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1. Introduction 
Digitalization and the continuous improvement of 

Industry 4.0 in the production of technical 

products have enabled increasingly 

comprehensive data acquisition within the 

individual processes over the last few years. This 

has made it possible to implement complex and 

more precise data-based analysis procedures. 

Based on the data, multivariate models, such as 

methods of Inference Statistics (IS) or Machine 

Learning (ML) algorithms, can be developed to 

capture multi-dimensional, complex relationships 

and determine their influence on achieving 

defined process goals. Implementing these 

models on the running processes enables the 

recording of the quality of the products within the 

manufacturing process. As a result, parameter 

settings can be adjusted during production, rejects 

can be reduced, and the quality of the final 

product can be guaranteed. Such methods can 

create a solid foundation for continuous process 

optimization and the constant improvement of 

quality management. As digitalization and data 

collection are expected to continue gaining 

importance in the manufacturing industry in the 

coming years, it makes sense to use this data by 

implementing such methods in the processes 

within the framework of quality management. 

This paper outlines and discusses in detail a 

framework for surface monitoring according to 

every single step along the monitoring process. 

The study differentiates between the application 

of IS as well as the application of Artificial 

Intelligence (AI) or, in particular, ML. Most 

applications are based on the same data sources 

but on different sample sizes and provide answers 

to various questions that complement each other. 

In the case of the application of ML algorithms, 

the proposed framework distinguishes between 

supervised, semi-supervised, and unsupervised 
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learning techniques based on various data and the 

availability of the target values or classes. 

Since data is one of the key elements, the 

influence of the amount of data, data quality, and 

data structure are discussed with regard to the 

uncertainty of the models and the final results. 

Furthermore, the influence of the mentioned 

measurements, usually used as target variables, 

on the results is also discussed. 

This paper has a generic character and can 

be applied to many technical products. 

Nevertheless, many of the single steps of the 

framework are explained based on joint projects 

realized in common work of academia and 

industry over the past decade. 

2. Classical approach and it’s challenges  
The aim of this framework is to improve the 

manufacturing process by implementing data 

analysis methods. Figure 1 illustrates the classical 

manufacturing process and the associated quality 

assessment or monitoring process in the context 

of producing technical products. A raw part is 

manufactured with a fixed set of adjustment 

parameters, and the quality is inspected and 

evaluated based on empirical experience and 

subjective assessment after the production 

process. The products are then sorted into good 

quality, approved products and rejects. One of the 

quality management objectives is to reduce waste 

and associated costs. The setting-parameters 

relevant to the manufacturing process have a 

direct influence on the quality of the final product. 

However, a simple standardized parameter setting 

can only be defined to a limited extent due to 

environmental conditions, wear of individual 

components, and production-related differences 

such as the type of raw parts or the material used. 

Therefore, a constant process improvement is 

aimed at by optimizing the choice of setting 

parameters within the framework of this research 

work. 

 
Fig. 1. Classical manufacturing process and the 

associated quality assessment in form of monitoring 

process 

 

The characteristics of the product, such as 

roughness, shape, topography, gloss, or 

colouring, can be measured to create an objective 

quantification. However, classical methods for 

measuring these characteristics are time-

consuming and expensive, and alternative 

methods must be used for implementation.  

In addition, demographic changes and the 

lack of experience among young employees pose 

a challenge for many companies. In this case, an 

automated and data-driven solution for 

monitoring product quality may provide a suitable 

solution. 

3. Framework for the monitoring of surfaces  
In Figure 2 the planned, improved, and data-

driven framework of the manufacturing and 

quality assessment process in production of 

technical products is shown. This approach is 

based on the PDCA quality control cycle.  

The first step involves selecting the process 

parameters, which are recorded as input data for 

further analysis. In order to determine the quality 

of the surfaces, a measurement-based procedure 

(cf. section 4) with data-driven methods (cf. 

section 5 and 6) are to be used. If the quality meets 

the requirements, it is passed on to the next step. 

However, if the surface is judged as a reject, the 

setting parameters need to be adjusted for 

subsequent batches. In addition, an adjustment 

parameter setting is to be determined with which 

the quality of the assessed product can be 

reworked in order to achieve the quality 

standards. The last step is only possible if the 

quality allows for rework; otherwise, the product 

needs to be disposed of.  

The use of data-driven methods is also 

planned for these two process steps. In contrast to 

the process described in section 2, in which an 

entire batch is manufactured and assessed (cf. 

Figure 1), the quality assurance in the adapted 

process is assigned to the manufacturing process 

of an individual product. In this way, 

discrepancies in the setting parameters are 

detected at an early stage and immediately 

adjusted. This minimises the effort to rework 

initial rejects and leads to cost reduction. 

In Figure 2, the white boxes represent the 

steps of a classical process, the green boxes are 

the data-driven approaches, and the red ones 

represent the novelty of the proposed framework. 

The main advantages of the proposal are the full 

automatization of the process, significantly 

reduced demand on the participation of an 

employee as well as significantly reduced need of 

his experience, and finally the possibility of full 
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documentation of the manufacturing process and 

the product’s quality itself.  

 
Fig. 2. Improved, data driven manufacturing process 

and the associated quality assessment in form of 

monitoring process 

4. Measurements 
The basis of any data analysis is the availability 

of measured values that have been recorded with 

regard to the surface topography to be examined. 

For the measurement of surface topographies or 

component geometries, various measurement 

systems have become established in industrial 

applications.  

4.1. Measurements systems 
The most important universal measurement 

systems which were used in the context of the 

present research work to obtain measurement data 

as the basis for Inference Statistics and AI-based 

data analysis of components, are briefly outlined 

below: 

 Coordinate measuring technique; measurement 

of geometric parameters of simple and complex 

components; operation in the measuring 

laboratory (often under air-conditioned 

conditions); measurement result: component 

geometries, conditionally (depending on the 

gauging head) also surface topography 

parameters. 

 Surface and contour measurement system: The 

starting point of a probe system is a transducer 

with which the surface profile sensed by the 

probe tip is converted into an analogue electrical 

quantity; a distinction is made in gauging head 

systems between the following setups: 

Reference surface touch probes, skid-type touch 

probes. Measurement result: Surface topography 

characteristic values 

 Circular and cylindrical form measurement: 

Form testing devices are measuring devices with 

which the form deviations of certain components 

are recorded and evaluated with high accuracy. 

Measurement result: component geometries and 

surface topography characteristic values 

 Computer tomography (CT): CT is an imaging 

procedure. In contrast to X-ray tomography 

(pure radiography), CT uses a computer to 

digitally calculate sectional images from the 

absorption values of X-ray signals that pass 

through the body from different directions. The 

sectional images can be calculated into a 3D 

model. measurement result: internal/external 

component geometries. 

 Optical and optoelectronic measurement 

systems: 

a) Measuring microscope: Measuring objects 

in transmitted light (2D): stamped and bent 

parts, plastic parts, external threads, gear 

wheels, seals; measuring objects in 

reflected light: Surface fittings, surface 

finishes (3D). 

b) Photogrammetry (3D): Calculation of 

three-dimensional coordinates based on 

images taken from different directions. 

Measurement result: component 

geometries. 

4.2. Measurement uncertainty 
A decisive influence on Inference Statistics and 

AI-based data analytics is the measurement 

uncertainty that is assigned to the measured 

values depending on the measurement method. 

Large measurement uncertainties lead to possible 

false detections or misinterpretations - for 

example in component assessment or anomaly 

detection. The following fundamentals must be 

considered cf. (Radetzky 2021a) and (Radetzky 

2021b): 

1) The measurement uncertainty U is a parameter 

associated with the measurement result Y that 

characterises the dispersion of the values that 

could reasonably be assigned to the 

measurand. 

2) The measurement uncertainty U is a measure 

of the possible measurement deviation of the 

estimated value of the measurand determined 

as measurement result Y. 

3) The measurement uncertainty U is an 

estimated value to characterise a range of 
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values within which the true value of the 

measurand Y lies. 

5. Statistical analysis  

5.1. Inferential Statistics in the analysis and 
assessment of surfaces: Approach 
The methods of inferential statistics offer extensive 

possibilities for the analysis and evaluation of 

component surfaces. The following approach 

including basic steps is carried out for this purpose. 

A) Development of a reference baseline 

1) Determination of the function-critical and 

safety-critical component features on the basis 

of which the surface can be characterised (e.g. 

roughness values Ra, Rz, Rsm, and gloss). 

2) Definition of reference component classes 

with different properties. 

3) Recording of series of measured values - using 

suitable measuring systems (cf. Sec. 4) - to 

represent reference component classes with 

different properties. 

4) Mapping the features of the component 

classes. 

a) Parametric: reference distribution models 

b) Non-parametric: reference values 

B) Analysis and evaluation of component 
surfaces 

1) Measurement of the test object on the basis of 

defined function- and safety-critical 

components. 

2) Comparison of the condition of the test object 

and the condition of the reference component 

classes, considering the measurement 

uncertainty (cf. Sec. 4.2). 

a) Two-sample comparison: parametric or 

non-parametric; e.g.: mean value and 

dispersion. 

b) Multi-sample comparison: parametric or 

non-parametric; e.g.: mean value and 

dispersion. 

3) Result: Evaluation of the component surface 

by assignment of a reference component class 

with indication of significance levels and 

measurement uncertainty consideration. 

5.2. Function and safety-critical features 
When analysing the technical reliability of a 

product or a process, function-critical and safety-

critical characteristics often represent the starting 

point of the analysis (Bracke 2022). In the context 

of the present explanations, function-critical 

characteristics are understood to be all 

characteristics that are of particular importance for 

the central functions and for the reliability of a 

component, an assembly or a system. Function 

critical features are often considered within the 

tests to be performed during component 

manufacture. The inspection procedures may be: 

random sampling, Statistical Process Control 

(SPC) or full inspection. 

Safety-critical features include all features 

that, in the event of a deviation from their 

specification, lead to a fault that endangers users 

respectively people. Therefore, safety-critical 

characteristics in series production are monitored, 

for example, with a (non-destructive) full 

inspection 

5.2. Methods of Inference Statistics 
Since the analysis and evaluation of component 

surfaces focuses on the comparison of the 

condition of the test object and the condition of 

the reference component classes, this chapter 

focuses on the two-sample case and the multiple-

sample case. 

5.2.1. Hypotheses 
Fundamental to the comparison of test object and 

reference component class on the basis of 

function/safety-critical characteristics is the 

investigation of mean value and dispersion (cf. 

Table 1): 

Two distributions F and G have the same 

shape (null hypothesis), but differ in a location 
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Two distributions differ in the variability 

(alternative hypothesis H1): 
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Table 1. Selection of statistical significance tests for 

the comparison of the condition of the test object and 

the condition of the reference component classes (two 

and multiple sample case)  

Two sample case 

Mann-

Whitney-U 

Test 

Comparison of two 

centroids 

parameter

-free 

Siegel-

Tukey Test 

Comparison of two 

dispersions 

parameter

-free 

Levene-Test Comparison of two 

dispersions 

parameter

-free 

t-Test Comparing two 

mean values 

parametric 

F-Test Comparison of two 

variances 

parametric 

Multi-sample case 

Kruskal and 

Wallis test 

Comparison of 

several centroids 

parameter

-free 

Post hoc 

analysis 

according to 

Conover 

Detection of the 

centroid, which 

deviates in a multi-

sample comparison 

parameter

-free 

Bartlett-Test Multiple variance 

comparison 

parametric 

Jonckheere 

and 

Terpstra-

Test 

Comparison of 

several samples 

with regard to a 

trend behaviour 

parameter

-free 

Meyer-

Bahlburg-

Test 

Multiple variance 

comparison 

parameter

-free 

6. Machine Learning  
As stated in (Hinz 2018) ML is (in addition to 

planning, reasoning, natural language processing, 

perception, creativity, etc.) a branch of AI with 

the aim of predicting of unknown events or 

scenarios that are unknown to the computer at the 

present time. It gives the machine the ability to 

learn from experience without being explicitly 

programmed (cf. Witten 2001). Furthermore, ML 

is a field of data mining, since it is a process of 

solving problems by analysing data already 

present in a database and discovering patterns in 

this data. Basically, ML can be categorized with 

regard to the following categories (cf. Awad 

2015): 

 Supervised learning: A mechanism that 

concludes the underlying relationship 

between the observed data (in this case the 

attributes or input data) and the target class 

(or target variable). The learning task uses the 

training data to synthesise the model function 

and tries to generalize the underlying 

relationship between the input and the output. 

 Unsupervised learning: Designed to discover 

hidden structures in unlabelled datasets. 

Here, the outputs are unknown at the time of 

the analysis. The general approach involves 

training through probabilistic data models. 

The most popular examples are clustering 

and dimensionality reduction. 

 Semi-supervised learning uses a combination 

of a small number of labelled and a large 

number of unlabelled datasets to generate a 

model function or classifier. Because the 

labelling process of acquired data requires 

intensive skilled human labour inputs, it is 

expensive and impracticable. In contrast, 

unlabelled data are relatively inexpensive and 

readily available. Semi-supervised ML 

methodology operates somewhere between 

the guidelines of unsupervised learning 

(unlabelled training data) and supervised 

learning (labelled training data) and can 

produce considerable improvement in 

learning accuracy. 

There are also further branches of ML, such 

as reinforcement learning (a methodology that 

involves exploration of a sequence of actions or 

behaviours by an intelligent agent in a defined 

environment with the aim to maximize the 

cumulative reward) but since they don’t find an 

application in the presented framework, they will 

not be discussed in this paper.  

6.1. Supervised learning  
As already stated, supervised learning generalizes 

the underlying relationship between the input and 

the output. The relationship can be stated in form 

of classification (in case of classified variables) or 

regression (in case of continuous variables) 

analysis. For both classes of problems exist 
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different algorithms which will be discussed in the 

following.  

The key difference between supervised and 

unsupervised learning is the availability of the 

target variables. These target variables can be 

subdivided in quality monitoring according to the 

type of data:  

 Single variables represented by integers, 

floats, characters, or strings 

 Signals represented by a development of a 

single variable, e.g. a vector of integers 

 Pictures 

As a matter of course, both single variables 

and signals can be used in univariate and 

multivariate way.  

Due to the mentioned applications and data 

types, following algorithms can be used for the 

quality assessment (excerpt):  

 Classification problems with single variables 

as targets:  

o Logistic regression 

o Decision trees (Hinz 2019) 

o Random Forest algorithms (Hinz 

2022a) 

o Support Vector Machines 

o Neural Networks (Hinz 2021a) 

 Regression problems with single variables as 

targets:  

o Regression analysis 

o Regression Trees  

o Random Forest algorithms (Hinz 

2022) 

o Support Vector Regressors 

o Neural Networks (Hinz 2021) 

 Classification and regression problems with 

signals as target variables: 

o Recurrent Neural Network with 

different architectures. The most 

common are Long-Short-Term-

Memory algorithms (LSTM) (Hinz 

2022b) 

 Classification and regression problems with 

pictures as target variables: 

o Convolutional Neural Networks 

(CNN)  

6.2 Unsupervised learning  
Since the target variables (as well as their types) are 

missing in case of unsupervised learning, there is 

no need for differentiation between classification 

and regression problems. Here, as already stated, 

the aim is the search of hidden structures in 

unlabelled datasets. Nonetheless, these algorithms 

can be also divided in different groups based on the 

underlying concept for grouping the structures:  

 Algorithms based on the distances between the 

input variables like k-Means (Hinz 2022c) 

 Algorithms based on the concept of 

distribution functions line Gaussian Mixture 

Models (GMM) (Hinz 2022d) 

 Density based approaches like DBSCAN 

(Density-Based Spatial Clustering of 

Applications with Noise) 

 Hierarchical clustering (Awad 2015) 

6.3 Semi-supervised learning  
Semi-supervised learning is a very powerful 

learning technique especially when the cost of 

labelling is too high. This is very often the case in 

many industrial applications, in particular when 

the processes are changing and the underlying 

data varies between them. One of the solutions is 

the application of the Yarowsky algorithm, as 

shown in (Brueggemann 2022).  

7. Data preparation  
All the presented methods in algorithms (with 

regard to IS and ML) perform only as good as the 

quality of the data provided for the analysis 

process. Moreover, a good model does not 

provide valid results with poor data-quality.  

One of the major problems is the uncertainty 

in the data and in the models. This can have many 

reasons such as the data quality (e.g. used variable 

types, NaN handling, missing values, amount of 

data), mathematical models (e.g. optimization 

algorithms, parameter estimators, underlying 

distribution functions), or empirical knowledge 

about the models (use cases, network 

architectures, and hyperparameter tuning of the 

algorithms). Some of the mentioned problems are 

described and quantified in (Hinz 2015).  

A further challenge in case of the application 

of many of the ML algorithms is the feature 

extraction. In many cases this is the most time-

consuming part of the overall analysis. The 

description of the features as well as their 

extraction is problem-based (i.e varies from one 

case to another) and is out of the scope of this 

paper. For comprehensive information refer to 

(Guyon 2006) and (Liu 1998).  



1735Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

7. Conclusion  
This paper presents a method for quality 

monitoring of technical products. The steps 

presented for process optimization are part of a 

comprehensive quality assessment based on the 

PDCA cycle for continuous improvement, aimed 

at achieving the quality objectives. An important 

component of the process optimization presented 

is the use of information systems (IS) and 

machine learning (ML) algorithms to assess the 

quality of the product. Furthermore, this paper 

presents an improved method for the data-driven 

manufacturing process. 

This paper demonstrates a wide range of 

application possibilities of many algorithms in 

both IS and ML domains. The algorithms are 

discussed in terms of their applicability based on 

the underlying data. Finally, the challenges 

regarding measurements and data uncertainties 

are discussed in detail. 
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