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To improve the conventional methods of condition monitoring, a new image processing analysis approach is needed
to get a faster and more cost-effective analysis of produced surfaces. For this reason, different optical techniques
based on image analysis have been developed over the past years.
In this study, fine grinded surface images have been generated under constant boundary conditions in a test rig built
up in a lab. The gathered image material in combination with the classical measured surface topography values is
used as the training data for machine learning analyses. The image of each grinded surface is analyzed regarding its
measured arithmetic average roughness value (Ra) by the use of Recurrent Neural Networks (in this case LSTM).
LSTMs are a type of machine learning algorithms which can particularly be applied for any kind of analysis based
on time series. In this paper a possible optimization potential of the available databases is analyzed. For this purpose,
two different sets of images with various resolutions were taken under the same conditions. Since the data plays an
essential role for the training of machine learning models, the challenge in the application is often to find cost-
efficient, fast and at the same time process-adaptable measurement methods that also have sufficient accuracy. Thus,
the target values recorded with tactile measurement method are compared to a more precise confocal / optical
measurement method. This results in two data sets with unequal distributions and different statistical variance.
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1. Introduction

The optical perception of high precision, fine

grinded surfaces is an important quality feature for

these products. Its manufacturing process is rather

complex and depends on a variety of process

parameters (e.g. feed rate, cutting speed) which

have a direct impact on the surface topography.

Therefore, the durable quality of a product can

be improved by an optimized configuration of the

process parameters.

In this study, a variety of cutlery samples with

different surface topographies are manufactured

with a variety of process parameters of the high

precision fine grinding process. Surface topogra-

phies are measured by the use of classical meth-

ods like roughness measuring device or confocal

measuring device.

To improve the conventional methods of condition

monitoring, a new image processing analysis ap-

proach is needed to get a faster and more cost-

effective analysis of produced surfaces. For this

reason, different optical techniques based on im-

age analysis have been developed over the past

years. For the purpose of this study, fine grinded

surface images have been generated under con-

stant boundary conditions in a test rig built up in a

lab. The gathered image material in combination

with the classical measured surface topography

values (tactile and confocal) is used as the training
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and target data for machine learning analyses.

Within this study, the image of each grinded sur-

face is analysed regarding its measured arithmetic

average roughness value (Ra) by the use of Re-

current Neural Networks (in this case LSTM).

LSTMs are a type of machine learning algorithms

which can particularly be applied for any kind of

analysis based on time series. The novelty of the

proposed method is the treatment of the pictures

as time series. In general, along many horizontal

lines drawn along the original picture of the sur-

face, the development of the lightness value of the

line provides a time series analogical signal that

can be treated by recurrent network.

The entire parameter study regarding the network

topology and parameter settings was performed

prior this study. In this paper, only the most per-

formant settings are used as starting points for

the further optimization and uncertainty quantifi-

cation. The approach of optimizing the algorithm

results and identifying a reliable and reproducible

LSTM model, which operates well independent of

the choice of the random sampled training data,

is presented in detail. Finally, the performance

of the models trained with the optical measured

data is compared with the models from the tactile

measured database.

.

Fig. 1. An example image of a slicer knife analyzed
within this research activities

2. Data generation

The presented research activities within the ana-

lyzed data set embrace photographs of the sur-

faces of 812 8” slicer knives (cf. figure 1) and

851 8” chef’s knives (cf. figure 2) The surface

images are taken within an experimental test rig

which provides constant boundary conditions (cf.

section 2.2). Reference measurements of the sur-

face roughness as well as gloss and coloring are

taken of all the knives (cf. section 2.1).

.

Fig. 2. An example image of a chef knife analyzed
within this research activities

2.1. Reference measurements

The term classical measurements is used in this

work for this type of measurements that can be

performed with common and available stand alone

measurement devices without the need of an ap-

plication of any further process steps. As a matter

of principle, some devices, as the confocal system

presented in this chapter, need third-party soft-

ware to edit and provide the results but there is

no need of additional programming or applying

of mathematical algorithms beyond this software.

There are two main devices used in this study:

• Roughness Tester

• MarSurf CM mobile

Roughness Tester is a typical roughness measur-

ing device that works based on piezoelectric micro

probe principle. Basically, a test head moves along

a line of 6mm and measures the unevenness of

surface height along one line, which means that

one measurement provides one single value. Ac-

cording to the product data-sheet, the tester has

the following specifications:

• Roughness parameters Ra, Rz, Rq, Rt

• Accuracy ±15%

• Repeatability < 12%

• Measuring range Ra 0.05...10μm

• Scanning path in total 6mm

The second device used for the measurement of

roughness as target values for the further analysis

is an optical 3D microscope that uses the con-

focal measuring principle. Basically, the device

measures a given number of 2D edge slices in

a specified height and joins all of them to a 3D

shape. For a comprehensive explanation of this

method refer to (Price, 2011).

The main advantages of such a system are the
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Fig. 3. MarSurf CM mobile - confocal measuring de-
vice build up in the lab

high precision (much higher than in case of a

piezoelectric roughness measuring device) as well

as the art of the measurement. It is performed in

a predefined area (and not along a single line) by

so called stitching, which is moving of the lens

along the area, measuring and merging the re-

sults. Therefore, the measured value is the average

roughness of a surface defined as:

Sa =
1

A

∫∫

A

|Z(x, y)|dxdy (1)

The main advantage of a surface roughness is that

additionally to the measured value itself we obtain

also the scattering of the roughens within this area.

Device used in this study is the MarSurf CM

mobile produced by Mahr. The assembled device

used in the lab with a 320L lens, as shown in fig.

3, has the following technical specifications:

• Maximum number of metering points

within one measurement:

1200 · 1200 = 1.44mil

• Lens magnification: 50x

• Lateral measurement range x · y(mm)2:

0.1024

• Extended lateral measurement range x ·
y(mm)2 with the use of stitching: 84.6

• Measurement uncertainty based on an

exemplary measurement of Ra =

0.079μm: uncertainty U = 0.01μm,

standard deviation σ = 0.0022μm

Standard deviation is calculated based on 25 mea-

surements. For more technical specifications refer

to the Mahr homepage.

The measurement area was placed 1cm below the

mentioned 6mm line to avoid spacial uncertain-

ties. In order to assure that all the measurements

are performed at the same position, a 3D printed

holder was designed and used for the confocal

measurement as well as the test rig presented

designed for the purpose of this study. The grey

holder is placed below the knife blank of the

MarSurf CM mobile picture presented in figure 3.

(Hinz et al., 2019, 2020)
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Fig. 4. Comparison of the distributed values out of
both measurements: tactile and confocal

The Distribution of the values measured with both

measuring devices is shown in Fig. 4. It can be

observed that the values differ in many cases.

This is mainly caused by the uncertainty of both

measuring systems. It needs to be highlighted that

both systems have different amount of uncertainty

which leads to different target values. This will,

obviously, have an impact on the overall results

presented in section 4.

2.2. Experimental setup

In order to take comparable images of different

knives, two similar test rigs that provide consistent

lighting conditions was designed and build up for

the purpose of this study. As a matter of principle
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it is one test rig that was adopted for two different

experiments. The test rig is based on a design with

white inside-walls, to keep ambient light outside

and diffuse the light inside to prevent reflections

on the knife’s surface. The knives are mounted on

a 3D printed fixation to ensure a proper position-

ing of each knife.

Two LED Spotlights, pointed at the walls on the

top- and bottom ends of the knife in the first

experiment and at the knife itself in the second one

(second camera needs much more light), provide

constant, diffuse light conditions inside the box.

This light arrangement accentuates the character-

istic marks left by the grinding process that appear

in a 90◦ angle to the knife’s length. The photos are

taken with:

• Olympus E-520 DSLR, equipped with

an Olympus Zuiko Digital 14-42mm f

1:3.5-5.6 lens in the first experiment (pic-

tures with lower resolution of 3648px x

2736px cropped to 1250px x 550px)

• Canon EOS 77D camera with a Canon

MP-E 65mm f/2.8 1-5x macro lens in the

second experiment ((pictures with much

higher resolution of 6000px x 4000px

without any need of cropping due to a

better lens).

The lens is placed normal to the knife’s surface at

a distance of 8 cm. For a comprehensive descrip-

tion of the test rig cf.

3. Computer vision based feature
extraction

Computer Vision (CV) describes the ability of

perception of optical data by a computer. Since the

investigation of optical data is extremely complex,

picture pre-processing can be used to reduce the

amount of information which will be studied to

the most important characteristics for the available

analysis task. The selection and application of

appropriate pre-processing methods increase the

quality and accuracy of the research. Therefore,

within this study CV is used for analyzing the

pictures of the knife surfaces and for the extraction

of relevant features out of these images. (Koblar

et al., 2015; Suen et al., 2018; Szeliski, 2011)

As a first step the part of the knives, where the

reference measurements had been taken, has to be

identified on the pictures. In this way, scattering

of the surface topography and inconsistent light-

ning conditions on the edge of the focused range

don’t affect the results of the further analysis. The

images are cropped to a size of 1250 px x 550 px,

which corresponds to an area of 2,5 cm x 2,0 cm.

Fig. 5. (a) cropped image (b) sobel operator (c) con-
trast change and sobel operator (d) low pass mask and
median blur (e) low pass mask, median blur and sobel
operator

The knife surfaces have a grooved structure, as

it can be seen in figure 5(a). On all of the images

the creases are rising vertically and parallel, but

they differ in terms of the creases’ width, depth

and quantity along the considered picture section.

As a result information to determine these param-

eters will be detected within this research of the

analysis of the surface roughness based on CV.

Because the roughness is measured orthogonal to

the creases, it makes sense to extract the features

in the same way. The grooves are not consistent

along their length. For this reason, ten uniformly

distributed lines are drawn over the image height

and the features are detected along. (DIN, 2010;

Hinz et al., 2019)

In order to get the best results, appropriate pic-

ture pre-processing filters and methods are utilized

to reduce and adjust the kind of information which

is inspected. The choices of the type of filters

and their specification were made on base of re-

searches and trials on the data base. For one part

of the pre-processing the contrast of the images is

changed. Besides that, low and high frequencies

are filtered with approved filters. For the pur-
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pose of sharp separations between the individual

grooves, the Sobel filter for the x-dimension with

a kernel size of five is used. It is a well-known

high pass edge detecting filter by which the kernel

gets convolved with the image. As low pass filter,

a filtering mask is used which is applied to the

frequency domain of the image. On top of that,

the median blur filter with a kernel size of three

is selected to eliminate disruptive pixels by the

comparison with its neighbors. Figure 5 shows

the original and the pre-processed pictures. (Hinz

et al., 2019; Kekre and Gharge, 2010; Koblar

et al., 2015; Solem, 2012; Suen et al., 2018)

Because the pictures are two-dimensional the

grooves’ depth cannot be gathered directly. There-

fore, the lightness of each pixel is extracted by

the use of the L*-value of the CIELAB color

space. Since its course over the image width is

comparable to a roughness profile, the course is

used to determine parameters with the formulas

of the roughness values (Ra, Rq, Rz, Rt). These

parameters are calculated over the whole image

width, over the width of the sampling length,

and without the consideration of the edges of the

images since these areas tend to show changing

lightning conditions.

4. Model analysis

In this section a detailed analysis of the data sets

is performed and discussed. The data sets used

within this study is based on cropped images

mentioned in chapter 3 and has the structure as

follows: As already stated in (Hinz et al., 2022),

the slicer dataset includes 8120 data points ex-

tracted from 812 knives, while the chef dataset

contains about 8510 data points. From both types

of knives, the entries along the surface can be

analyzed on ten evenly set lines. Nevertheless, the

three target classes based on target variables are

not distributed equally. Fig. 6 shows the distribu-

tions of the classes for both types of knives. Here

it can be clearly seen that for both types of knives a

shift of the class distributions results from the con-

focal measurement. While the chef’s knives have

a more concise middle class, the proportions of the

slicer class 0 as well as 1 decrease and the upper

class expands. Since the set of examples plays a

crucial role for the training of machine learning

algorithms, all data series were used despite the

unequal class distribution.
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Fig. 6. Data Set Class Distribution

In addition to the varying measurement meth-

ods of the target value, there are also differences in

the image resolution when comparing the two sets

of measurement data analyzed here. Each labeled

slicer knife time series consists of 1250 pixels

with an assigned ouput value of tactile rough-

ness measurement. On the other hand, the chef’s

knife data used here has an increased resolution

of the images and thus each labeled time series

consists of 6000 pixels. The assigned label then

results from the confocal measurement. The input

variables provide information about the surface

properties by the lightness of the individual data

point (the grey value lies between 0 and 255). In

the output classes, the classification is based on

the average roughness ”Ra” in μm and classi-

fied according to the natural specification limits.

Obviously, the middle class which represents the

well produced knifes is the most frequent one. In

any other case, the company would produce more

waste than salable products and probably get into

serious financial problems after a short period of

time. The output variable is classified into three

classes and subsequently binarized by the use of

softmax function regarding the output neurons for

numerical purposes.

In the previous study, two different time series

sizes were tested. To keep the number of training

data as high as possible, the pixel rows were not

only read in as a whole, but also divided into five

250 px rows. (cf. figure 7) shows an example of

these series. The red dashed lines mark the split
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points of the pixel rows, which also correspond to

the original label of the whole pixel row of 1250.

This results in a data set size of 40,600 examples.

Fig. 7. Lower resolution Slicer Knife: Time series
example with dividing lines

As seen in Fig. 8), the same approach was used

for the data augmentation of the chief knife pixel

rows. However, here the data was merely doubled

by a single division, because a key discovery from

the previous study was that longer pixel rows led

to better accuracy. Since longer time series led to

considerably longer calculation times and com-

putational effort, the maximum possible length

was shortened from 6000 pixels to 3000. This

results in 17,020 examples that can be used for the

machine learning training.

Fig. 8. Higher resolution Chef Knife: Time series ex-
ample with one dividing lines

Based on the best performance regarding val-

idation and test accuracy, a specific parameter

combination was found for the slicer knife classi-

fication. Since the datasets have comparable prop-

erties, this was used as a reference point for the

investigations of the chef knife classification. So

the models were trained with the maximum possi-

ble pixel sequence length of 3000 px. The initial

parameters are:

• neurons: 250

• learning rate of 1e-5

• batch size of 128

• epochs: 500

The final Slicer validation accuracy of this

model is 77.46% with in test accuracy of 75.62%.

With this combination of parameters, now the

chef knife data were trained. Except for a large

variance, the chef knife models performed compa-

rably well without further adjustments. Based on

the experiences with the slicer knives, obvious pa-

rameters such as neurons, batch size, and learning

rate were adjusted, and a different optimizer (RM-

Sprop) was tested using a best guess approach.

An exemplary learning curve is shown in Fig. 9).

It is clear to see here that the model becomes

highly overfit after about 120 epochs and learns

non-generalizing through the strong increase in

validation loss.

Fig. 9. Chef Knife dataset: Overfitting model with 500
epochs

To optimize the models that tended to overfit,

the number of epochs was reduced to 120 and
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the learning rate was increased to 0.01. Finally,

a suitable parameter setting was tested ten times

to determine the stability of the model. Figure

10) shows a fully trained learning curve of these

models, which makes it apparent that the learning

process is stable and has fully converged, because

no changes in the curve are visible.
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Fig. 10. Chef Knife dataset: Optimized learning curve

4.1. Model comparison

In direct comparison, the new chef knife mod-

els showed significant performance improvements

compared to the slicer models. With a slight in-

crease in the number of neurons to 300 in a single

layer, an average validation accuracy of 84.45%±
σ = 3.68e− 3 was achieved. Thus, the results are

almost 7% more accurate than those of the slicer

knives. The test accuracy could also be improved

by 7.5% to 83.11% ± σ = 2.1e − 3. The loss

values also decreased by more than half: Valida-

tion Loss 0.399 ±σ = 7.31e− 3; Test Loss 0.434

±σ = 3.42e − 3. The low standard deviations of

all results thus demonstrate high stability of the

models.

4.2. Validation of results

In general, it can be stated that the optimized

models, which were validated with one product

type, are suitable to be transferred to similar prod-

ucts. However, different measuring systems that

provide varying amounts of uncertainty will cause

the models to differ from each other in terms of

the overall accuracy.

Observing the results leads to the conclusion that

more precise measuring systems, such as the con-

focal system used in this study, result in much

higher accuracy. This can be logically understood:

a more accurate measuring system with higher-

quality pictures leads to more accurate results.

Taking into account the uncertainties arising from

the manufacturing processes and product materi-

als, an overall accuracy of approximately 85% can

be considered satisfactory.

5. Summary and outlook

This research paper focuses on the importance

of high precision fine grinded surfaces in cutlery

products. The authors highlight the need for a

new image processing analysis approach to im-

prove conventional methods of condition monitor-

ing for these surfaces. The paper presents a study

in which fine grinded surface images are gener-

ated and analyzed using Recurrent Neural Net-

works (LSTMs) to determine the arithmetic av-

erage roughness value (Ra). The study includes a

comprehensive discussion of the parameter study

for identifying a reliable and reproducible LSTM

model, which operates well independent of the

choice of the random sampled training data. The

authors compare the performance of the mod-

els trained with confocal measured data with the

models from the tactile measured database. Over-

all, the aim of the study is to develop a condition

monitoring tool that can be used to ensure the

quality of knives and reduce rejects by detecting

deviations of the target values and adapting the

production process accordingly.
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