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Ultrasonic inspection of railway rails is considered as an important safety barrier. Fatigue cracks develop due to the
cyclic loads of the passing trains, and the objective is to detect the cracks before they develop to rail breakages.
It is crucial to understand the speed of crack propagation to define the inspection regime. Trains equipped with
ultrasonic instruments can run at a speed of approximately 50 km/h. As the train runs suspects are identified with their
position along the track. The ultrasonic scans are investigated and critical suspects are recorded for manual follow
up. The manual inspection uses a hand-held trolley also with ultrasonic instruments for a more precise classification.
In Norway a classification regime consisting of the categories 2b, 2a, 1 and 0 are used. The main strategy is to
monitor 2a and 2b defects, whereas 1 defects have to be fixed within a month, and 0 defects have to be fixed
immediately. The inspection- and follow-up regime is now under revision. Markov modelling is the basis for this
study. There are several challenges with the Markov model. First of all, since we assume that fatigue is the main
failure mechanism, it is not realistic to assume that transition times follow the exponential distribution. Secondly,
times between running the inspection car are almost deterministic which requires a special treatment when solving
the Chapman-Kolmogorov differential equations. Finally, the follow-up activities are also deterministic, and phase-
type models may be used to handle transitions representing the results of the follow-up activities. In this paper
we investigate how we can simplify the modelling without compromising the results too much. Statistics from the
Norwegian rail network is used for estimating the transition rates.
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1. Introduction

1.1. Background

Rail breakages are a serious threat to railway

safety, and periodic ultrasonic inspection of the

rails is required safety barrier for safe operation of

the railway infrastructure. The objective of inspec-

tion of the rails are to detect presence of defects

such as cracks and track misalignments.

Defects are initiated within the rail and, as the

rail operation proceeds, they worsen if no recov-

ery action is undertaken. An ultrasonic inspection

car is used to detect potential defects. Candi-

date defects are verified by a manual inspection

with a hand-held trolley with ultrasonic inspec-

tion equipment. Defects, or cracks, are assigned a

“severity class” and a corresponding maintenance

procedure is currently undertaken:

2b Keep rail under observation, and perform

a new inspection every 3 MBT

2a Keep rail under observation, and perform

a new inspection every 1 MBT

1 Repair the defect quickly, i.e., within one

month

0 Repair failure immediately and initiate

traffic restrictions until failure is fixed.

where MBT is million gross tonnage passed at the

specific location. A zero-defect is considered to

be a failure, and would develop to a rail breakage

in short time, i.e., a state F. From an optimization

point of view, both the frequency of inspection and

the follow up regime should be optimized.

A common conceptual model used in mainte-

nance is the so-called P-F interval model. The

basic idea in our context is that failure is regarded

as a two- stage process. First, at some time a defect

in the system becomes detectable, i.e., a potential

failure (P), then, after some delay-time, the system

fails due to the degeneration of the defect, i.e., a

failure F. Backer and Christer (1994) present an

exhaustive review of the models based on the the

P-F interval concept.

The traditional P-F interval model is efficient to
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determine the frequency of ultrasonic inspection

by the measurement car. However, this model is

not suited for determining follow-up regimes for

the defects. In this work we will align our model

with the categories 2b, 2a, 1, 0 and F used in the

Norwegian reporting system. It is assumed that all

defects follow a trajectory 2b-2a-1-0-F, although

since inspections are not continuous, we might

expect that some states are not observed. Since fa-

tigue is the dominating failure mechanism, it is not

very realistic to claim exponentially distributed

sojourn times for each state. In other work, see

e.g., Laskowska and Vatn (2020) and Vatn (2020)

phase type models for the sojourn time is proposed

where virtual sub-states are introduced for each

of the main states. In order to keep the model

simple, we stick to the assumption that sojourn are

exponentially distributed in our basis model, and

then we investigate the impact of non-exponential

transitions.

1.2. Objective

The first objective of this paper is to develop a

model giving decision support wrt:

• The frequency of inspection car mea-

surements

• The follow up activities for identified de-

fects, i.e., 2b and 2a defects

• The time limit for fixing type 1 defects

• The time limit for fixing type 2a defects,

if this is introduced as a new rule.

The second objective is to propose a method for

estimating relevant model parameters based on

observed data.

2. Modelling framework

2.1. Transition diagram

In the model we introduce two type of states,

i.e., hidden states (H) and evident states (E). A

hidden state means that there is a defect in the

rail, but this is completely unknown for the line

manager. An evident state means that the defect

has been revealed by ultrasonic inspection. In

principle defects could also be detected by other

means like line inspections, but in the current

model this is not included as part of the modelling

framework. Although an evident defect is known

to the line manager, it might develop to a more

critical state. In the diagram x is representing the

actual physical state, i.e., 2b,2a,1,0 or F. Further

y is representing the last assessment of the state.

The notation used is then:

x-H The physical state is x, and the state is

completely unknown for the line man-

ager

x-E The state is x and the state (defect) is

revealed by the ultrasonic inspection

x-Ey A fault state has been revealed and the

last assessment of the state is y, but the

state has developed further, i.e., to the

physical state x.

State R represents that a defect has been repaired,

and the ultimate objective is to ensure that a defect

develops to state R rather than to a fault state.

Several parameters are used to describe the

transition between states. τ is the inspection in-

terval. τ1 and τ0 are time limits for fixing type 1

and type 0 defects respectively. τ2aE is the time

limit to fix a type 2a defect, if such a regime

is implemented. τx is the follow up interval for

defect types x = 2b and x = 2a respectively. qx
represents the probability that a physical state x

will not be detected and correctly classified after

an inspection by the ultrasonic car. qx→y is the

probability that a follow up activity of a defect

of type x when the physical state is y will fail to

reveal the true state. Finally, λx→y is the transition

state from the physical state x to the physical state

y.

Figure 1 shows the transition diagram. The ver-

tical transitions and right&down transitions indi-

cate physical degradations. A horizontal transition

indicates revealing the true physical state.

Contrary to the PF-model, we may now in-

troduce a failure probability that depends on the

state. Typically q2b < q2a < q1 < q0.

A dashed transition means that this transition

only occurs at an inspection, where the inspection

interval is τ . τx is the follow-up interval when the

last assessment of the state was x. The state R is

representing the situation that a defect is fixed.
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Fig. 1. Markov model. H = hidden, E=Evident, Dashed lines are transitions after inspections.

2.2. Mathematical modelling

In Figure 1 there are four types of transitions.

(1) Horizontal- and downwards transitions left to

right. These represent physical degradations

and are included in a transition matrix A.

(2) Horizontal transitions left to right indicated by

dashed arrows. These take place at point of

times τ, 2τ, 3τ, . . ., and are not included in A,

but in a maintenance matrix M.

(3) Vertical transitions right to left. These transi-

tions are taking place at deterministic point of

times given by the follow up intervals. In the

model we approximate these with exponential

distributed transition times, where phase type

modelling later on can improve the approxi-

mation. The transitions are included in A.

(4) Transitions from evident states to state R.

These transition are restricted to take place

within a given time limit, but are approximate

by the exponential distribution. These transi-

tions are included in A.

Let P(t) be the time dependent probability vector

for all states in Figure 1. At time t = 0 we

start in state 2b-H, which means that we do not

consider the frequency of defects in this part of the

modelling. To find the time dependent probability

vector we use the iterative procedure described in

Appendix A. I.e., if P(t) is the solution at time t,

then P(t+Δt) is given by

P(t+Δt) ≈ P(t) [AΔt+ I] (1)

where I is the identity matrix, provided that no in-

spection by the ultrasonic car takes place between

t and t + Δt. In our case sufficient precision is

obtained by letting Δt = one day.

To model inspections let M be the inspec-

tion/maintenance matrix. M is basically the iden-

tity matrix, but for a cell with the row representing

x−H and the column representing x−E the value

is given by 1−qx, and the corresponding diagonal
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cell is qx.

In our integration procedure we apply:

P(t+) = P(t−)M (2)

for t = τ, 2τ, 3τ, . . ..

3. Numerical results

Table 1 shows the parameter values used. The

study case is Ofotbanen, an ore freight line in Nor-

way. Figures are preliminary but should be in the

correct order of magnitude based on discussion

with experts in the field. Statistical data to obtain

more precise transition rates are discussed in later

sections.

The first four transition rates in Table 1 repre-

sent the total journey from a defect is detectable

until a failure occurs, i.e., the PF-interval. With

the data given this corresponds to an expected PF-

interval of 3.4 years with standard deviation 2.4

years. For most lines the PF-interval is assumed

to be longer, but since this is an ore line, the PF-

interval is assumed to be shorter than the average.

Table 1. Parameter values for base case, time unit is

years

Parameter Value Description

λ2b→2a 0.5 =1/2
λ2a→1 1 =1/1
λ1→0 1.54 =1/0.65
λ0→F 1.43 =1/0.7
q2b 0.25 Pr(Fail to reveal 2b)
q2a 0.2 Pr(Fail to reveal 2a)
q1 0.1 Pr(Fail to reveal 1)
q0 0.05 Pr(Fail to reveal 0)
qF 0.1 Pr(Fail to reveal F)
τ2b 1/2 Follow up interval of 2b
τ2a 2/3 Follow up interval of 2a
τ1 1/12 Time limit, type 1 repair
τ0 0.01 Time to repair, type 0
τ 0.5 Interval, measurement car
τ2aE ∞ Potential time limit, 2a

Table 2 shows the result from the sensitivity anal-

ysis. The base case corresponds to the input values

shown in Table 1. The columns F-H, F-E etc con-

tains the probability that a defect ends up in one

of these states. The column F contains the total

probability that a defect is not revealed, and ends

up as a rail breakage.

For the base case, observe that the state F-E2a

has the highest probability. This means that the

most likely scenario is that a defect is revealed

by the ultrasonic car and classified as a 2a fail-

ure, and then it develops unnoticed to a failure.

A more strict regime for 2a failures is therefore

reasonable.

In the sensitivity analysis we therefore first con-

sider the effect of fixing 2a failures within various

time frames. The results shows that compared to

the base case we can reduce the total rail break-

age probability with 50% by replacing 2a failures

within a time frame of half a year. For this scenario

we observe that the main contribution to a rail

breakage is the state F-E2b, i.e., the defect has

been revealed, but it develops unnoticed to a rail

breakage.

The sensitivity analysis shows that running the

ultrasonic train three times a year gives some

reduction in the rail breakage probability, but the

value of such a strategy is not any better than

setting a relative long time limit for fixing 2a

failures, i.e., two years.

More frequent follow up of 2a failures also

gives some reduced risk. This is a much cheaper

measure than fixing the defect within e.g., one

year.

4. Effect of inspection and follow up
strategies

In this section we consider two aspects of strate-

gies for handling 2a defects

(1) Frequency, and quality of follow up actions

(2) Lead time for fixing 2a defects

Figure 2 shows the failure probability as a func-

tion of lead time if 2a defects are fixed a short

period of time after the fault is revealed. Observe

that if lead time is long, the failure probability is

approaching the value without implementing this

strategy.

Figure 3 shows the failure probability as a func-

tion of the interval of follow up of 2 defects for

three “quality” levels of such a follow up. We

see that there is much to gain if we can increase
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Table 2. Results for various situations

Situation F-H F-E F-E1 F-E2a F-E2b R Total F

Base case 0.001 0 0.008 0.024 0.014 0.952 0.048
τ2aE = 2 0.001 0 0.005 0.015 0.014 0.964 0.036
τ2aE = 1 0.001 0 0.004 0.01 0.014 0.97 0.03
τ2aE = 0.5 0.001 0 0.004 0.006 0.014 0.975 0.025
τ = 1/3 0 0 0.009 0.02 0.008 0.962 0.038
τ = 1 0.011 0 0.005 0.028 0.027 0.928 0.072
τ2a = 0.25 0.001 0 0.008 0.02 0.014 0.956 0.044
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5. Phase type modelling

By means of phase type modelling it is possi-

ble to approximate any distribution for the tran-

sition times by means of introducing intermedi-

ate/artificial states. This means that the states in

Figure 1 are replaced by two or more states

where we still can work with our Markov frame-

work. The more states we use, the better could

the approximation be. See e.g., Laskowska and

Vatn (2020) for a description of the approach in

a similar setting as used here.

For a complicated diagram the extra states make

the model more complicated. We can interpret

the set of extra (sub) states as a trajectory out

of the main state where we have to run through

these states, and typically making the transition

more deterministic as we add more sub states. We

will demonstrate this for the situation where we

implement a strategy to repair 2a defects within a

period of τ2aE time units. In reality this would be

close to a deterministic transition for which we in

our first approach approximated by a exponential

distribution. A slightly better approach would be

to represent the transition with two exponential

transitions by means of one extra state, where the

two transition rates are doubled, i.e., 2τ2aE . In

Figure 1 we see that there are such transitions

from the states 2a-E, 1-E2a and 0-E2a. We there-

fore need to represent these transitions with extra

states, say 2a-E*, 1-E2a* and 0-E2a*. Since there

is a transition from 2a-E→1-E2a with rate λ2a→1

we also need a similar transition from 2a-E*→1-

E2a*, and similarly 1a-E*→0-E2a*.

The model has been re-run with these extra

states under the assumption τ2aE = 0.5, and the

result shows that the total failure probability is

reduced from 2.5% to 2.2%. This is in accordance

with Laskowska and Vatn (2020) where more de-

terministic behaviour typically gives better per-
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formance under a given maintenance strategy. In-

troducing more states will give even more exact

results at a cost of a more complicated model. In

this study we investigated the effect of introducing

phase type models for a very critical parameter,

i.e., the time limit for fixing 2a faults, and other

parameters could also be considered, but will most

likely give less improvement in the model.

6. Estimation of model parameters

6.1. Introduction

This section presents ideas for estimation of

model parameters, i.e., the degradation rates. In

the maintenance system only defects 2b, 2a, 1, 0

and F are used, but in the ultrasonic system also

a defect 3 is available, and will be used for the

estimation.

Ideally each defect should be documented with

a unique identifier and a exact distance measure

on the track. This is not the case for the Norwe-

gian system today. This means that defects with

uncertain distance measure needs to be paired. In

the current study the following criteria applies:

• The distance measure on the track for two

subsequent observation should not deviate

with more than 20 metres

• Two subsequent observations should be of the

same categorization, i.e., a categorization re-

lated to the physical mechanism of the defect

• For two subsequent observations, the second

one should never be in an earlier stage than

the first one.

For each data point i, i = 1, 2, . . . , n we have the

triplet < ui, s1,i, s2,i >, where ui is the number

of days between two subsequent observations, and

s1,i and s2,i, both ∈ {3,2b,2a,1,0,F}, are defect

types for the first and second observation respec-

tively. It should be noted that in the data defect

type F has not been collected so far, so some work

remains for a complete estimation.

6.2. Simple estimation procedure

A simple estimation procedure is as follows:

(1) Repeat for all defect types x ∈ {3,2b,2a,1,0}
(2) Set f = 0 and t = 0

(3) Process all data points i, i = 1, 2, . . . , n

(a) If s1,i �= s2,i then let f = f + 1

(b) Let t = t + ui/ [d(s1,i, s2,i + 1], where

d() is a distance measure between the first

and second observation, i.e., the number of

states between the first and second obser-

vation. For example d(2b, 1) = 2.

(4) The transition rate for defect type, or state x

into the next state is λ̂x = f/t.

If we assume that transition times out of state x are

exponentially distributed, we only need to collect

the number of transitions out of state x, i.e., f and

the exposure time t. Since a transition out of state

x for data point i could have occurred anywhere in

the interval of length ui, we divide by the number

of jumps +1, since the exposure time for that ob-

servation being in state x is ui/ [d(s1,i, s2,i) + 1].

This last argument only holds if all transition rates

are equal, but it will do for the simple estimation

procedure.

6.3. The maximum likelihood approach

A weakness of the simple approach is that it only

holds for equal transition rates. Further we do

not utilize the information contain in a data point

with larger jumps. The The maximum likelihood

approach (MLE) approach is rather simple, and it

should be noted that, e.g., estimation by utilizing

Markov Chain Monte Carlo simulation has been

proposed and used by e.g., Bladt and Sørensen

(2009) and Laskowska et al. (2023) in a similar

situation.

Figure 4 depicts the physical states with the

corresponding transition rates. A Markov model

is now introduced to represent the physical degra-

dation of the system from state 3 to state F. The

transition rates, i.e., the λ’s in Figure 4 are above

diagonal elements in the transition matrix A, for

example a1,2 = λ3→2b. The below diagonal el-

ements are vanishing since we do not have data

points representing improvements.

The objective of the estimation is to obtain numer-

ical values for λ3→2b, λ2b→2a, λ2a→1, λ1→0 and

λ0→F.

The main idea in an MLE approach is to com-

pare the actual transitions taking place between
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2b 2a 1 0 F3

Fig. 4. Model used for estimation

subsequent observations with the probability of

that transition should occur, given the parameters

in the model, i.e, the λ-vector.

Assume that the system is in state s at time t

and we consider a later point of time t + u where

no maintenance has been conducted in the period

between. Since we know the system state at time

t the P(t)-vector is given by

Ps(t) = 1

Pj(t) = 0 for j �= s (3)

For a given λ-vector in A we have:

P(t+ u) = P(t) · eAu (4)

To calculate the exponential of a matrix, .i.e., eAu

is numerically time consuming, and requires effi-

cient library functions. The calculation in Eq. (4)

must be carried out for each data point, and for

each evaluation of the log-likelihood function, and

in Appendix A we therefore propose an efficient

approach to speed up the calculation.

To calculate Eq. (4) we let t = 0 and let u = ui

for data point i. Further si,1 defines the starting

point, i.e., when setting up P(0). Equation (5)

shows the log-likelihood function:

l(λ1, λ2, . . .) =
∑

j=1

lnPsi,2(ui) (5)

Table 3 shows the structure of the data needed for

the ML estimation:

Table 3. Typical data for ML esti-

mation

i ui si,1 si,2

1 140 2b 2b
2 200 2b 2a
:

6.4. Numerical results

To demonstrate the estimation procedure we

use data from another line, i.e., Nordlandsbanen

where we have n = 556 data points. Table 4

shows summary statistics.

Table 4. Summary statistics

Transition # data points Avg u

3→3 146 660
3→2B 8 530
3→2A 116 797
3→1 44 870
3→0 5 552
2B→2B 8 270
2B→2A 13 420
2B→1 9 477
2B→0 10 964
2A→2A 109 483
2A→1 42 589
2A→0 7 264
1→1 30 560
1→0 2 1271
0→0 7 495

The data is rather suspicious since the track

is inspected yearly, and the average duration be-

tween subsequent observation in the pairs, i.e.,

a data point typically spans two to three years.

There are various reasons for this which is not

discussed here.

Table 5 shows the results from the estimation.

To better grasp the result the table presents mean

time to transition (MTTT) rather than the transi-

tion rate.

Table 5. Estimation of mean time to transition

From state MTTT(simple) MTTT(MLE)

3 806 878
2B 273 94
2A 1340 1102
1 9037 2059

Note that in the simple approach each state is

considered separately. In particular, it should be
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noted from Table 4 that there are 44 data points

indicating an average transition time from state 3

to state 1 equal to 870 hours. This imply evidence

for rather high transition rates between state 3 and

state 1. Since there are few data points starting in

state 2b, the MLE therefore gives a rather high

transition rate from state 2b to 2a. In the sim-

ple approach, only data for state 2b is used, and

hence a lower transition rate and higher MTTT

is obtained. Also in the simple approach only

data for state 1 is used to calculate the transition

rate into state 0, and since there were only two

transitions, the 30 data points with no transition

drives the transition rate to a low value, and hence

a high MTTT, compared to the MLE where there

are many transitions into state 0 with rather short

transition times, giving a much lover transition

rate from state 1 to state 0 compared to the simple

approach.

7. Summary and conclusion

This work presents a mathematical framework

for modelling degradation of railway rails. The

model allows investigating different maintenance

strategies. We do not explicitly discuss mainte-

nance optimization, and for a more comprehensive

presentation reference is given to previous work

documented by Podofillini et al. (2006). We also

present an MLE approach for estimating the tran-

sition rates in the Markov model used.
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Appendix A. Approximating matrix
exponentials

In our MLE approach we need to calculate P(t) =
P(0)eAt for each observation each time we have to
evaluate the likelihood function. Since calculating the
exponential of a matrix is numerically time consuming
an approximation is proposed. Recall that P(t) =
P(0)eAt was obtained from the Kolmogorov Markov
equations:

P(t) ·A = Ṗ(t) (A.1)

But rather than solving the exponential, we realize that
for Δt being small, we have:

P(t) ·A ≈ [P(t+Δt)−P(t)] /Δt (A.2)

which leads to an iterative procedure where we repeat-
edly use:

P(t+Δt) ≈ P(t) [AΔt+ I] (A.3)

and where I is the identity matrix. Calculating Eq. (A.3)
is numerically fast. However, if we need to calculate for
e.g., one year, i.e., t = 365 this will be time consuming.
Now let M0 = [AΔt+ I], and calculate subsequently:

Mi = Mi−1 ·Mi−1 (A.4)

as long as 2i−1 < tmax. Now it follows that for t =
1, 2, 4, 8 . . ., we use

P(t) ≈ P(0) ·Mi (A.5)

where 2i−1 = t. If t /∈ {1, 2, 4, 8} let b be a vector
for the binary representation of t, for example b =
[0, 1, 0, 1, 0, 0, 0, ...] corresponds to t = 0 ·20+1 ·21+
0·22+1·23+0·24+. . . = 0+2+0+8+0 . . . = 10. In a
similar way we calculate P(t = 10) = P(0)·M1 ·M3.

Note that if the longest observation period is 2048
days, i.e., five and a half year, we only need 11 matrix
multiplication to generate all the Mi matrices. This is
done only once for each evaluation of the likelihood
function. For each observation we typically need in
average five or six matrix multiplications to calculate
P(t).
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