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The development of autonomous ships is advancing, but ensuring their safe operation remains a challenge. To aid
safe operations, autonomous ships are expected to be monitored by humans in a remote operation center. A key
challenge is ensuring that human operators remain alert and ready to take control of the system when necessary.
Maritime traffic poses a potential hazard to autonomous vessels, and systems to aid the operator in identifying
abnormal ship behavior in time should be in place. This study develops deep learning models that automatically
detect anomalous ship behavior to aid human operators. A case study related to the remote operation center in Horten,
Norway is conducted, where four various autoencoder architectures have been trained on historical Automatic
Identification System data to detect maritime traffic anomalies in the Oslo fjord. The models are trained in an
unsupervised manner, such that they are able to automatically identify anomalies, without the need for manual
labelling. The results indicate that a recurrent autoencoder is the most promising architecture for decision support of
remote operators, as it is able to identify a variety of anomalies, with fewer false positives.
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1. Introduction

Significant progress has been made towards real-

ising maritime autonomous surface ships in re-

cent years, with many full-scale projects cur-

rently underway (e.g. ASKO and Seafar vessels).

Ensuring that the level of risk associated with

their operation is at a level equal to or less than

that of conventional vessels, however, remains a

challenge. Autonomous ship systems will likely

be equipped with advanced situational awareness

systems that leverage Artificial Intelligence (AI)

based technologies to facilitate object detection

and tracking. Such systems are envisioned to han-

dle collision avoidance situations in accordance

with relevant regulations. As current regulations

stand, however, it is unlikely that the automation

system can handle all possible ship encounter sit-

uations, especially in multi-vessel encounters or

if a ship behaves erratically. Current autonomous

ship systems are, therefore, designed to incorpo-

rate human operators in Remote Operation Cen-

ters (ROC) that can intervene in such situations.

However, it is challenging for human operators

to always stay sufficiently alert such that they

can determine when they need to take control of

the system. This is assumed to be the cause of

a fatal car accident in 2018 where the driver did

not pay enough attention when using automated

steering functions (National Transportation Safety

Board, 2020). As such, the automation system

must be capable of determining when its limits

are approaching to facilitate a safe and timely

handover. Many situations that will require human

intervention relate to surrounding maritime traf-

fic. If the system is capable of identifying future

situations that the automation system may not be
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able to handle, it can alert human operators far in

advance. Operators will then have more time to

gain adequate situation awareness to handle the

situation.

1.1. Anomaly Detection for Remote
Operation Centers

Anomaly detection refers to the process of identi-

fying patterns that deviate from the expected or

normal behavior of a system. In the context of

maritime traffic, there exists many different types

of anomalies, e.g. route deviation or unexpected

activities. Anomalous e.g., erratic, ship behavior

is inherently unpredictable, and likely outside the

operational envelope of the automation system re-

sponsible for collision avoidance. Identifying and

alerting an ROC operator to such situations is,

therefore, critical for the safety of an autonomous

ship. However, automatically identifying anoma-

lous behavior is not straight forward. Several stud-

ies have looked into different methods for detect-

ing anomalies in maritime traffic. Wolsing et al.

(2022) provides a review of anomaly detection

approaches and divides them in the following cat-

egories; geometric, stochastic, and machine learn-

ing based. This study will use a machine learn-

ing (ML) based anomaly detection method, more

specifically an autoencoder. ML-based anomaly

detection can help to overcome some of the lim-

itations of traditional methods, such as rule-based

systems, which can struggle to adapt to changing

conditions or detect subtle anomalies. ML algo-

rithms can learn from vast amounts of historical

data to identify patterns and anomalies that might

be missed by human operators.

Some studies have investigated the application

of autoencoders for anomaly detection in maritime

traffic. Iltanen (2020) detects anomalies in AIS

data by combining the reconstruction error from

a recurrent autoencoder (RAE) with an outlier

score produced by clustering the encodings of

the autoencoder. However, the results showed that

the outlier score produced by the clustering on

the encodings did not improve the anomaly de-

tection performance compared with simply using

the RAE in most cases. Son et al. (2020) uses

a convolutional autoencoder on images of vessel

trajectories based on AIS to detect anomalies.

However, the results showed a low identification

rate for the anomaly detection method, partially

due to the model not taking into account the speed,

ship type, or origin and destination.

Hu et al. (2023) uses a variational recurrent

autoencoder (VRAE) to find connections between

each dimension of the trajectories and a graph

variational autoencoder (GVAE) to find spatial

similarities between trajectories. These two recon-

struction probabilities (from VRAE and GVAE)

are combined using a reinforcement learning

method to create an anomaly detection method.

Manually labelled data are used to train the

anomaly detection algorithm, i.e. in a supervised

manner. However, for an unlabelled data set, an

unsupervised method is more suitable, as manu-

ally labelling large amount of data is time consum-

ing, and not feasible in many cases. Furthermore,

the approach does not generalize to other regions

where labelled data are unavailable.

1.2. Contribution

This study aims to develop a method to discover

anomalous ship behavior from AIS data in an

unsupervised manner, i.e., without labelled data.

In this manner, the approach can be applied to any

given region. Deep learning based approaches, as

mentioned in this section, show promise for facil-

itating anomaly detection functions. More specif-

ically, autoencoder-based approaches provide a

generic solution to discover the normalcy of data.

As opposed to parametric approaches that are

constrained to pre-defined distributions, deep au-

toencoders can learn the distribution of the data.

This study will compare the performance of four

different autoencoders used for anomaly detec-

tion, i.e., a simple Autoencoder (AE), a Varia-

tional Autoencoder (VAE), a Recurrent Autoen-

coder (RAE), and a Variational Recurrent Autoen-

coder (VRAE). Anomalies will be detected by

detecting tracks with a high reconstruction error.

2. Methodology

In this study, deep learning is leveraged to dis-

cover anomalous ship behavior. An autoencoder-

based approach is utilized, where the normalcy of
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the traffic is learned by the model. This section

outlines the steps to conduct data processing, as

well as details on the investigated autoencoder ar-

chitectures. Typical anomalies include positional,

speed, and course anomalies, which will be inves-

tigated in this study.

2.1. Data Pre-Processing

To identify the normalcy of ship traffic in a given

region, historical ship behavior can be evaluated

via historical AIS data. For live traffic monitoring,

live AIS streams can be input to the anomaly

detection models for inference. AIS data include

relevant kinematic information yielding insight

into the behavior of a specific vessel. However,

these data must be pre-processed prior to model

training. In this study, the data are initially filtered

to remove unrealistic speed values, as well as

data points that intersect land. Subsequently, the

data per vessel are aggregated to generate routes

between two locations. Each route is further inter-

polated at one minute intervals.

2.1.1. Route Clustering

Once routes have been generated, they are clus-

tered to represent unique origin-destination pairs.

Unique origin and destination locations are dis-

covered by applying the DBSCAN (Ester et al.,

1996) clustering algorithm to all starting and stop-

ping locations for each route. A cluster is then

defined as a unique combination of origin and des-

tination locations. By grouping historical routes

in this manner, specific behavior can be discov-

ered, as most vessels travelling between two lo-

cations will have similar trajectories. Applying an

anomaly detection model to the specific behavior

of such a cluster may yield enhanced performance,

as it is likely able to identify specific anomalies to

the cluster compared to training on all data for the

region.

2.1.2. Trajectory Windowing

During inference, live AIS data will be monitored.

It is, therefore, of interest to determine the dura-

tion during which an anomaly should be identi-

fied. For instance, a 5, 10, 20 or 30 minute tra-

jectory segment could be considered anomalous.

In this study, the past 10 minutes of ship behavior

is monitored. As such, the data in each historical

route are split using a sliding window technique

with a window size of 10. By stepping one minute

into the future along a route from start to end, 10

minute trajectory segments are generated for all

routes in the relevant data set.

2.1.3. Feature Scaling

The following features from the historical AIS

data are chosen for training of the anomaly de-

tection models: Latitude, Longitude, Speed over

Ground (SOG) and Course over Ground (COG).

To make the input more conducive to deep learn-

ing models, the features are scaled between 0 and

1. Furthermore, the COG values are decomposed

via their Sine and Cosine values, due to their

circular nature.

2.2. Autoencoder-Based Anomaly
Detection

Autoencoders are neural networks that aim to re-

construct their input. They are generally consid-

ered to be comprised of two parts; an encoder and

a decoder. The encoder is responsible for gener-

ating a representation of the input data, and the

decoder responsible for reconstructing the input

from this representation. In general, there are two

types of autoencoders; undercomplete and over-

complete autoencoders. An undercomplete au-

toencoder compresses the data to a dimensional-

ity less than that of the input feature space. As

such, the network learns to preserve as much mu-

tual information between the input and latent (i.e.

compressed) representation as possible. Overcom-

plete autoencoders have the opposite functional-

ity, where the latent space has a dimensionality

greater than the input space. Such architectures are

often used for de-noising applications.

In this study, we will investigate undercomplete

autoencoders. By forcing the network to compress

information from the input, anomalous data often

disappear, as they are not within the distribution of

learned normal data. As such, when reconstructing

the input from the encoded representation via the

decoder, the error between the input and the re-

construction should be greater for anomalous data
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than for normal data. Four autoencoder architec-

tures are investigated; a standard AE, a VAE, an

RAE and a VRAE. By evaluating the distribution

of the reconstruction loss for the training data set,

a threshold can be determined where any losses

over the threshold are classified as anomalies.

2.2.1. Standard Autoencoder

The simplest deep autoencoder architecture is

comprised of a Multi-Layer Perceptron (MLP)

(Bourlard and Kamp, 1988), where the encoder

and decoder are integrated in the same network.

For an undercomplete autoencoder, the number of

neurons per layer should decrease until the latent

layer. They should then increase until the output

layer which should have as many neurons as the

input. For time series data, there will be multiple

features per time step. The data set will, therefore,

be a 3-dimensional tensor, with dimensions batch

size, time series length and feature size. For a

standard autoencoder, the data must be in the form

of a 2-dimensional tensor. As such, the data are

flattened along the time and feature dimensions.

The network is trained using the reconstruction

loss, i.e. the error between the input and output.

2.2.2. Variational Autoencoder

A variational autoencoder (Kingma and Welling,

2014) learns a latent distribution of the data via

a probabilistic encoder pθ(z|x). The architecture

is, therefore, generally better suited for data gen-

eration, where a latent variable z can be sam-

pled from a prior distribution pθ(z) and decoded

to generate a new data point xi via a condi-

tional distribution pθ(x|z). Due to the intractabil-

ity of the encoder, it must be approximated as

qφ(z|x) which is further assumed to be normally

distributed as N (μz,σ
2
zI) with diagonal covari-

ance. This approximation is facilitated via neu-

ral networks that estimate μz and σz . The net-

work is then trained by maximising a variational

lower bound that in effect minimizes the Kull-

back–Leibler divergence as well as minimize the

reconstruction loss. For further details see Kingma

and Welling (2014).

2.2.3. Recurrent Autoencoder

Recurrent autoencoders (Srivastava et al., 2015)

leverage the power of recurrent neural networks

(RNN) to process time series data. In this case,

both the encoder and decoder networks are com-

prised of RNNs. Typically used architectures are

the Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU) architectures, as they are

able to handle challenges related to vanishing gra-

dients. In this study, the GRU is investigated as it

requires fewer trainable parameters compared to

the LSTM.

The encoder network processes a sequence, and

compresses it into a single vector, i.e. the final

hidden state. The decoder network then takes this

hidden state as input, and reconstructs the input

sequence solely based on the information stored

in the vector. The hidden state therefore acts as a

bottleneck for the network, compressing the input

to a lower dimensionality.

2.2.4. Variational Recurrent Autoencoder

The variational recurrent autoencoder was intro-

duced by Fabius and van Amersfoort (2015). The

architecture integrates a recurrent autoencoder

into the variational structure outlined in Sec. 2.2.2.

A recurrent encoder network will output a hidden

state, compressing the input. From this hidden

state, μz and σz will be estimated in the same

manner as Sec. 2.2.2, with a recurrent decoder

reconstructing the input from the sampled latent

state, z. The architecture should, therefore, be

more conducive with generating new time series

by sampling from the latent space.

3. Results and Discussion

3.1. Case Study - Horten ROC

This study is based on ASKO’s autonomous

barges transporting cargo from Moss to Horten,

that is, across the highly trafficked Oslo fjord.

The introduction of autonomous vessels will re-

quire an ROC where human operators monitor

the autonomous vessels and the nearby traffic to

ensure the safety and efficiency of the autonomous

vessels. The main focus of the personnel in the

ROC will be the autonomous vessels. Hence, it is
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Fig. 1. Massterly Remote Operation Center in Horten.
Courtesy: Kongsberg Norcontrol.

vital that surrounding traffic is automatically mon-

itored, and that this monitoring can raise alerts of

danger e.g. anomalous behavior. To develop and

test the autoencoders for anomaly detection, AIS

data from the Oslo fjord for one year (2019) pro-

vided by the Norwegian Coastal Administration

have been used.

3.2. Autoencoder Architecture

Each autoencoder was developed using PyTorch,

with scaling functions provided by scikit-learn.

Each network was optimized using the Adam op-

timizer. The sizes of the networks were identified

via experimentation of the latent/hidden size of

the network. After various configuration trials, a

hidden size of 10 was set for all autoencoders

for comparative purposes. The learning rate for

each network was optimized automatically via

PyTorch.

3.3. Comparing Autoencoders

The four different autoencoders AE, VAE, RAE,

and VRAE have been tested for anomaly detection

on one of the clusters in the data set, more specif-

ically all routes from Oslo and out of the Oslo

fjord. The original trajectories (green lines) and

anomalies (red lines) detected by the four models

are shown in Figure 2. The threshold for detecting

anomalies has been set to 99% of the reconstruc-

tion loss for the training set, further discussed

in Sec. 3.5. The models used to achieve these

results have only been trained on positional data,

i.e., latitude and longitude. As true anomalies are

unknown in this data set, the performance of the

models is evaluated based on a manual inspection.

In Figure 2(c) some areas of interest have been

highlighted with black boxes. In box 1 and 3

there are some trajectories that have large devia-

tion from the others and are, therefore, considered

true anomalies. Unlike the VAE and VRAE, the

standard AE and RAE are able to detect many of

these anomalies. One can see from the results that

the RAE is able to detect more anomalies in box

1, whilst the standard AE is able to detect some

more anomalies in box 3.

The varitaional autoencoders, however, appear

to have poor performance. The majority of discov-

ered anomalies are centered on the southern out-

skirts of the routes, and appear to be mostly nor-

mal behavior. This may be due to the variational

models learning more compact representations for

the highest density data, and data further from

this distribution (i.e. the outskirts) are penalized

more than abnormal sub-trajectories in regions of

higher density data. Non-variational autoencoders

are able to utilize the latent space to a greater

extent, and are generally better at reconstruction

tasks, but have poorer performance for data gen-

eration when sampling form the latent space. The

standard AE, however, also seems to focus on

regions of data on the outskirts, whilst the RAE

is able to capture more true anomalies.

Looking at box 2 in Figure 2(c), a lot of anoma-

lies are detected by the RAE. However, this is

an area where ships pick up pilots, which are

required for many ships sailing in the Oslo fjord.

Thus, the detected anomalies in box 2 are not real

anomalies. However, information relating to pilot

operations is to be reported. As such, anomalies in

this region, can be disregarded for vessels picking

up or dropping off pilots. Overall, of the four

tested autonencoders, the RAE is considered to

have the best performance, likely due to the recur-

rent architecture’s ability to capture dependencies

in time series data to a greater extent.
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(a) Standard AE. (b) Variational AE. (c) Recurrent AE. (d) Variational recurrent AE.

Fig. 2. Different autoencoders used for anomaly detection on selected cluster trained on position data.

3.4. Feature Selection

The RAE has also been tested with additional

features using the selected cluster. Figure 3(a)

shows the results from the RAE trained on po-

sition (zoom of Figure 2(c)), Figure 3(b) shows

the results from the RAE trained on position and

SOG, and Figure 3(c) shows the RAE trained on

position and COG. The anomaly detection thresh-

old is set to 99% of the total reconstruction loss.

One can see that many of the deviating trajectories

on the East side of the figures are detected by

the RAE trained on position alone, whilst the two

RAE models trained with the additional features

SOG and COG only detect parts of the anomalous

trajectories.

The results indicate that the RAE trained solely

on position data is the most reliable anomaly de-

tection model. This may be due to adding redun-

dant information. Speed for instance, is implicitly

included through the time dimension, as a large

deviation in position between subsequent time

steps indicate a high speed and vice versa. In the

following model evaluations, only positional data

are used is as input to the model.

3.5. Anomaly Detection Threshold

For detecting anomalous trajectories in the se-

lected cluster, i.e., in and out of Oslo, a de-

tection threshold of 99% of the reconstruction

loss was deemed suitable. However, when the

RAE is trained on different clusters, this detec-

tion threshold is not always suitable. Each cluster

will have varying degrees of anomalous behavior.

In instances where the distribution is dominated

by normal data, setting a threshold of 99% will

classify normal behavior as anomalous. Setting a

detection threshold in an unsupervised manner is,

therefore, challenging. An alternative to using a

percentage of the reconstruction loss is to thresh-

old based on a fitted distribution of the recon-

struction loss. However, using statistical measures

require an assumption of the distribution of the

data in the cluster, which might not be the same

for all the clusters. The log-normal distribution

was for instance tested, but deemed to have poorer
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(a) Position. (b) Position and SOG. (c) Position and COG.

Fig. 3. Anomaly detection using a recurrent autoencoder on the selected cluster with different features.

performance. The presented models have been

trained and tested on the same cluster, meaning

that one model is required for each cluster.

An alternative is to train the anomaly detection

model on all the clusters at once, and then apply

this global model for each cluster. This method

would make it easier to set a detection threshold,

as one only needs to set one global threshold

for all clusters. When comparing such a globally

trained RAE with the RAE trained on the data

within the selected cluster, it was found that the

global model had degraded performance, detect-

ing fewer anomalies than the local model. This is

likely due to the global model being trained on a

more diverse data set.

3.6. Application in ROCs

As previously introduced, the Horten ROC will

be responsible for monitoring the autonomous

ASKO vessels crossing the Oslo fjord. In the fu-

ture, the number of vessels the operators handle

may increase further. Being able to monitor multi-

ple autonomous ships simultaneously requires that

operators are notified of anomalous behavior via

relevant alarms, but also that there are as few false

alarms as possible.

Currently, anomalous behavior is detected

through statistical evaluation of a vessel’s current

position, COG, and SOG with respect to histori-

cal observations in the same area. Due to among

others high variation in traffic density in different

areas, it has proven difficult to come up with rigid

rules for when a given position should be deemed

anomalous. Hence, by looking at a sliding window

of the most recent observations for a given vessel,

it may be possible to make more targeted detec-

tions.

The results of this study indicate the poten-

tial of an RAE to identify multiple modalities

of anomalous behavior. Both routes that deviate

from the primary route are identified, in addition

to highly irregular behavior with multiple course

corrections and alternating directions. However,

as mentioned in Sec. 3.3, some anomalies are in

fact normal behavior. Given that the approach is

entirely unsupervised, false alarms will, therefore,

occur in such cases. Systems with a high fre-

quency of false alarms have negative effects on

human operators, as they can lead to the operators

ignoring many of the true alarms (Huegli et al.,

2020).

Utilizing automation for decision support has

also been shown to be problematic in various in-

dustries (Endsley, 2017). Some examples include

decision biasing, as well as challenges related to

increased system complexity. When integrating

AI-based systems, the complexity of the system

will inherently increase. Work is, therefore, being

conducted to identify how to improve human-AI

interaction (National Academies of Sciences En-

gineering and Medicine, 2022). These challenges

will need to be addressed when implementing

such an AI-based anomaly detection system as

outlined in this study.

Furthermore, due to the necessity of monitor-

ing multiple vessels live, the anomaly detection

function should be able to respond within seconds.

On average the RAE was able to conduct a single
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anomaly classification in 1.07∗10−5 seconds on a

standard laptop. Due to its ability to run multiple

predictions in parallel, the model scales well with

respect to performance, and deemed to be within

acceptable parameters for use in live traffic moni-

toring.

4. Conclusion and Further Work

To ensure the safety of autonomous ships nav-

igating through busy waterways, it is crucial to

identify any abnormal behavior in nearby vessels.

This study has, therefore, developed an automatic

anomaly detection system using unsupervised ma-

chine learning methods trained on historical AIS

data. The system employs four deep autoencoders

(AE, VAE, RAE, and VRAE) to identify anoma-

lous ship behavior. The RAE proved to be the most

effective in detecting anomalies while minimizing

the number of false positives. The model is also

capable of responding quickly in adherence with

requirements for live traffic monitoring. Integrat-

ing this system into an ROC can help operators

identify potentially hazardous situations for au-

tonomous ships. However, it is important to note

that the detection of false positives may hinder

human operators’ attention and decision-making

abilities. Proper integration of such AI-based sys-

tems is essential to ensure the situation awareness

of the operators.

Further work will focus on identifying anomaly

detection thresholds automatically to reduce the

number of false positives. Furthermore, deep

learning approaches, e.g. autoencoders, require

sufficient data volumes to ensure performance,

which may not always be available for a given

region. As such, future work will investigate uti-

lizing transfer learning to facilitate anomaly de-

tection. Many of the investigated clusters contain

routes of vessels with various characteristics (e.g.

ship type, length) that impact their maneuverabil-

ity. As such, future work will investigate incorpo-

rating such static information into the models to

improve performance.
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