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Topography-based Fuzzy Assessment of Burning Area in Wildfire Spread Simulation
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Wildfire propagation simulation is a key asset for first responders in their operational management. Geographical
features, such as the terrain, and meteorological features, such as wind, play a key role in the evolution of a
wildfire. However, some aspects of the propagation are fuzzy by nature, e.g. velocity regarding weather conditions
and terrains. In this paper, we propose a topography-based fuzzy approach to wildfire simulation. Without loss of
generality, we illustrate this assessment with some examples from an area of interest in Southern France.
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1. Introduction

Wildfires are becoming more destructive and

less predictable, especially due to human ac-

tivities and climate change that interact with

fire dynamics, e.g. the vegetation distribution

(Garbolino, Sanseverino-Godfrin, and Hinojos-

Mendoza 2016). Some softwares assist fire

fighters in wildfire prevention (Kalabokidis et

al. 2016). However, fire propagation simulation is

a key asset to help first responders prioritising the

tasks during crisis management. We can distin-

guish two kinds of contributions that predict fire

propagation.

On the one hand, the first approaches rely on

physics modeling. Most of the modern models are

based on Rothermel’s fire spread model (Rother-

mel 1972). These reliable equations describe the

chemical and physical processes of fire, consid-

ering the type of fuels. To decrease the computa-

tional cost, newer models use a grid to represent

the terrain (Adou et al. 2010). Indeed, recent con-

tributions suggest having a less precise simulation

that can be provided faster (Grasso and Innocente

2020).

On the other hand, recent methods use Arti-

ficial Intelligence (AI). A majority of contribu-

tions assess the risk of fire (Sakr et al. 2010),

mainly due to the availability of corresponding

data or knowledge. Nevertheless, AI has also been

applied to other related tasks (Jain et al. 2020)

like prevention and crisis management. In recent

years, different data driven approaches have been

developed to predict the spread of wildfires (Sub-

ramanian and Crowley 2018; Radke, Hessler, and

Ellsworth 2019).

Even if these methods differ on the approach,

they nevertheless agree on the difficulty of the

problem due to a strong uncertainty (Thompson

and Calkin 2011), and the importance of the slope

and the wind velocity and direction.

In this paper, we use a knowledge-based ap-

proach to predict the spread of wildfires. To be as

general as possible, we rely only on data that can

be accessed seamlessly, i.e. weather forecast and

Digital Terrain Model (DTM). Indeed, in our ex-

perience, it is very difficult to get historic data, ex-

cept in certain locations. Our method does not rely

neither on the fuels: we do no consider the vege-

tation and the soles. We use fuzzy logic (Zadeh

1965) to capture the uncertainty of our predic-

tions on a spatial context (Carniel and Schneider

2021), in particular DTMs (Iphar, Boudet, and

Poli 2021).

We designed a method so that we can distin-

guish three states of the areas: unburnt, burning

and burnt. Since our goal is to use the fire propa-

gation estimation as a tool to estimate risks, we

rather need a tool that can be used in different

locations than a precise model. This explains we

do not need any specific knowledge (e.g. fuels).

The next section gives an overview and the

intuition behind our contribution.
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2. General overview

We designed a new approach to estimate the fire

propagation regarding the main parameters that

are always available: the weather forecast, in par-

ticular the wind velocity and direction, and the

terrain as a DTM to provide with the slopes of the

area of interest.

The process of fire evolution can be decom-

posed in three different states that evolve with

time: firstly unburnt, then currently burning and

finally burnt. Our approach consists in represent-

ing these three different states with 2D fuzzy

sets (Zadeh 1965) on the area of interest, named

respectively U (as Unburnt), F (as Fire, for cur-

rently burning) and B (as Burnt). It allows con-

sidering the uncertainty of the spread of fire.

The 2D fuzzy sets are defined over a grid that

covers the area of interest and whose size depends

on the spatial resolution and the size of the area of

interest. For the sake of simplicity, let us consider

in this paper that the number of lines and the

number of columns of the grid are equal, and takes

the value n ∈ N
+∗. Let us note c a cell of this grid

in the set of all the cells C.

As the propagation is a temporal process that

depends on the previous state, we use an iterative

process (Figure 1). At each time step, the con-

tributions of the slope and of the wind are first

assessed. Then, those two individual contributions

are combined to compute the fire area of the fol-

lowing time step. The iteration is then ended with

an update of the membership score of each cell of

the three fuzzy sets U , F and B, shown on the

left-hand side of Figure 1. Once updated, those

fuzzy sets can be used as parameters of the next

iteration, and so on.

Fig. 1. Overview of the iterative approach.

As shown in Eq. (1), the 2D fuzzy sets form a

strong fuzzy partition on the spatial space that is

to say that, for all cell c ∈ C, U(c), F (c) and B(c)

are fuzzy values that sum to one:

U(c) + F (c) +B(c) = 1. (1)

We detail the approach in the next sections.

3. Iterative process description

As stated before, in our approach, one iteration

corresponds to the simulation of the evolution

of the fire across one unit of time. This unit of

time can be decided by the user according to the

terrain, to wind conditions or with the size of the

global computation, as more frequent iterations

may lengthen the total computational time, partic-

ularly when the timeframe of interest is large.

Fig. 2. Algorithm for the computation of the wildfire
spread area

Figure 2 shows the pseudo-code of our iterative

process for the fire spread prediction. It takes as

inputs an initial state, under the form of the three

fuzzy sets named U0, F 0 and B0 (their nature will

be further discussed in Section 5.4). On top of the

initial state, the input parameters are W , the local

state of the wind (direction and velocity) at the

time of the simulation, χ, the local Digital Terrain

Model, T , the time step between two iterations

and m, the desired number of iterations. f̃ , f1, f2
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and f3 are functions, which will be presented in

upcoming sections.

The procedure outputs three fuzzy sets in their

final form, denoted F , B and U .

In the procedure, a loop allows time to incre-

ment for a fixed number of iterations. Once this

iteration limit has been reached, the fuzzy sets in

their last updated form constitute the output.

Since the local DTM does not change over time,

the contribution of the slope is computed once

before the loop begins. However, since the wind

could change between iterations, the contribution

of wind is computed again at each iteration. Both

fuzzified contributions are then combined for the

generation of the fire spread area for the current

iteration.

Then, the updated forms of the fuzzy sets are

computed, in this order: first the burnt area, from

the former burnt and the former burning areas ;

second the burning area, from the previous burn-

ing area and the fire spread area ; and last the

unburnt area, from the newly computed burnt and

burning areas.

4. Wind and topography fuzzy
contributions

In this section, the two contributions of the wind

and of the slope to the propagation of fire are

described, along with their combination and their

fuzzification.

4.1. Topography contribution

In this section, we denote as
−→
Es the contribution

of the slope of the terrain to the evolution of

the wildfire. Fire tends to spread uphill, therefore

the direction of the line of greatest dip must be

determined in order to compute
−→
Es. The steeper

the slope, the fastest the fire spreads, therefore the

norm of
−→
Es will also evolve with the value of the

slope.

Let us denote
−→
S , a unit vector co-linear to the

upslope direction and s the value of the slope, in

percent.
−→
S and s have been retrieved from for-

mulas that we previously stated in (Iphar, Boudet,

and Poli 2021), while the evolution of fire speed is

ruled by a doubling of its speed every 10 degrees

in slope (Barjak and Hearne 2002; Sharples, Gill,

and Dold 2010):

In addition to the effect of the slope stricto

sensu, the fire also propagates when there is no (or

little) slope, at a speed that is denoted Sf , in m/s,

and that is retrieved from the literature (cf. section

4.4):
−→
Es = T · Sf · 2 s

10 · −→S . (2)

In Eq. (2), T represents the number of units of

time that corresponds to an iteration, in seconds,

and the resulting vector
−→
Es corresponds to the

contribution of the slope for each iteration. Since

the terrain is irregular, points will display various

values for both the uphill direction and the steep-

ness of the slope. Therefore, the resulting field

of local
−→
Es vectors will vary spatially. However,

since the terrain does not evolve over time, this

field remains still across various iterations. If the

local terrain is flat, the fire will then spread in the

direction of the wind. Figure 3 shows an example

of a field of slope contributions.

Fig. 3. A field of uphill vectors, in this case the terrain
has a positive slope towards North

4.2. Wind contribution

In this section, we denote as
−→
Ew the contribu-

tion of the wind to the evolution of the wildfire.

Fire tends to spread in the direction of the wind,

therefore this direction must be known in order to

compute
−→
Ew. Let us denote

−→
W the direction of the

wind, with W = ‖−→W‖ the speed of the wind, in

km/h.
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Thus,
−→
Ew is colinear to

−→
W , in the same direc-

tion, and its norm is determined as a fraction η of

wind speed as shown in the following formula :

−→
Ew = T · η · −→W/3.6. (3)

In Eq. (3), T represents the number of units of

time that corresponds to an iteration, in seconds,

and the resulting vector
−→
Ew corresponds to the

contribution of the wind for this iteration. The

value of η is to be determined by expert knowl-

edge, in the frame of the research project we are

involved in (discussed in section 4.4).

Since weather conditions can evolve over time

and over space, an accurate field of wind contri-

bution can be built with meteorological data, the

higher the spatial and temporal granularity and

update rate, the more precise the resulting field. In

this paper, for the sake of simplicity, we consider

a homogeneous wind field over both space and

time. Thus,
−→
Ew can be computed once before the

“while” loop. Figure 4 shows two examples of

wind contribution fields.

Fig. 4. Two examples of wind contribution fields.
Only the direction is shown, not the norm. Left 4(a) di-
rection is 200 degrees, right 4(b) direction is 70 degrees

4.3. Combination of both contributions

At each point of interest, we want to consider both

the contribution of the wind and the contribution

of the slope of the terrain.

The purpose is to determine the direction that

the fire will take, when departing from the point

of interest, which point will be reached by the end

of the iteration and by extension the area that will

be impacted by the evolution of the fire, during the

duration of the iteration, from the specific point of

interest.

The evolution of the fire, denoted
−→
E , is com-

puted as the vectorial sum of
−→
Es (Section 4.1) and−→

Ew (Section 4.2), following the model shown in

(Viegas 2004) and used in (Boboulos and Purvis

2009). A visual interpretation of this vectorial sum

Eq. (4) is shown in Figure 5:

−→
E =

−→
Ew +

−→
Es (4)

Fig. 5. The combination of wind and slope contri-
butions, in the crisp case, in the computation of the
evolution of a wildfire from (Viegas 2004)

Figure 6 shows the application of this vectorial

sum. Only the direction of the vectors are shown

in the picture, not their norm. It shows both re-

sulting vector fields of the sum of the slope con-

tribution of Figure 3 and both wind contributions

of Figure 4, with wind speed of 40 km/h in both

cases.

Fig. 6. Vector fields coming as a the vectorial sum of
both wind and slope combinations. Only direction is
shown, not the norm of vectors. Left: combination of the
upslope field of Figure 3 and the wind field shown 4(a).
Right : combination of the upslope field of Figure 3 and
the wind field shown 4(b).
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4.4. Fuzzification

When assessing the evolution of a fire, some pa-

rameters have to be considered during the compu-

tation. Since their value are not well known and

can vary depending on different factors such as

the type of fuel (the local vegetation type), it is

useful to consider them as fuzzy variables to cover

the various possibilities that can be encountered.

These fuzzy variables are defined by two bounds:

a lower bound for which the fire will spread surely

with that value, and an upper bound for which

the fire may spread with that value in one unit of

time. In this article, we focus on two variables: the

speed of fire on flat land and the evolution of fire

with wind.

The speed of fire on flat land is a variable we

can find in Eq. (2), denoted Sf . We take lower and

upper bounds of 3 and 5 m/s for the evolution of

the fire on a flat terrain, following the values found

in (McAlpine 1988) and (Adou et al. 2010).

The evolution of fire with wind is a variable we

can find in Eq. (3), denoted η. We take lower and

upper bounds of 5% and 15% for η, representing

the contribution of the wind in percentage of local

wind speed, following the values found in (Beer

1991).

Bounds for both variables Sf and η are param-

eters, thus their values are taken for the sake of

the example and can be replaced with any value

an expert might think better suits.

Since both
−→
Ew and

−→
Es are fuzzy,

−→
E becomes

fuzzy and its bound values are defined by
−→
Emin =−→

Ewmin +
−→
Esmin and

−→
Emax =

−→
Ewmax +

−→
Esmax,

as shown in Figure 7.

Fig. 7. Combination of wind and slope fuzzy contri-
butions, adaptation of Figure 5 with fuzzy values for
both Sf and η

Let us consider the cell c in all the cells C.

Once a couple of vectors (
−→
E c

min,
−→
E c

max) has been

computed for each cell c, the propagation step can

take place. We associate values dcmin = ‖−→E c
min‖,

dcmax = ‖−→E c
max‖ and gc, corresponding to the cir-

cular mean of the directions of
−→
E c

min and
−→
E c

max.

5. Spread of burning area

In this section, the iterative spread of the fire,

given the local wind and terrain conditions, is

shown, leading to the update of the three fuzzy

sets that define the situation in terms of burning

and burnt areas at a given time.

5.1. Propagation from a single point

We want to allocate to every single cell p in C a

score, noted Sk
c (p), corresponding to the evolution

of the fire from the cell of interest c at iteration k.

So for each cell p, we first have to assess whether

or not is it in the direction gc from the cell c.

Then, the score Sk
c (p) is allocated with respect

to the distance between p and c: if the distance

is lower than dcmin, then the score is maximal, if

the distance is greater than dcmax, then the score is

minimal and if the distance is in between dcmin and

dcmax, the score evolves linearly from maximal to

minimal.

The score for each cell p, as computed in

Eqs. (6) and (7) is then multiplied by the mem-

bership value of the cell c to the class burning,

corresponding to the value of F k−1(c), such that

∀p ∈ C :

Sk
c (p) = F k−1(c) · ξ(c, p) · μ(c, p) (5)

where

ξ(c, p) =

{
1 if p is in direction gc from c

0 otherwise
(6)

which means that ∃Ξ ∈ p such as
−→
cΞ and an unit

vector that originated in c and has a direction gc
are colinear and in the same direction, and where

μ(c, p) =

⎧⎪⎨
⎪⎩

1 if d(c, p) < dcmin

0 if d(c, p) > dcmax
d(c,p)−dc

max

dc
min−dc

max
else

(7)

where d(c, p) is the Cartesian distance between

c and p. The values taken by μ, as computed in

Eq. (7), are shown in Fig. 8.
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Fig. 8. Membership function for the spatial predicate
“is in the range of fire evolution”

The result of the propagation from a cell c is

shown in Figure 9.

Fig. 9. Propagation of burning area during one itera-
tion, in the direction gc. Original burning cell is c with
a membership score of 0.8. In light grey, all cells that
will have a non-null burning score from the propagation
from c are shown with their membership score.

5.2. Burning area propagation

The evolution of the whole burning area is de-

termined by merging all areas impacted by the

evolution of the fire from each and every burning

point. Thus, we perform a fuzzy union on all

the burning cells at the given iteration to update

the burning fuzzy set. As shown in Eq. (8), we

perform a fuzzy union between the scores from all

cells. We use the approach of (Bloch and Maitre

1995) using t-norms and t-conorms as respectively

fuzzy intersection and fuzzy union:

Sk(p) = ⊥
c∈C

Sk
c (p) (8)

where ⊥ is a t-conorm. In this paper, for the

sake of simplicity, and without loss of generality,

we use the max function as t-conorm.

5.3. Update of the fuzzy sets

Once Sk has been computed for all cells, we can

update the three fuzzy sets, namely the burning,

burnt and unburnt fuzzy sets. As a reminder, we

denote F k, Bk and Uk those three fuzzy sets at

iteration number k, and F k(c), Bk(c) and Uk(c)

the fuzzy values taken in a cell c in C. The compu-

tations of these fuzzy sets are shown in Eqs. (9),

(10) and (11).

First, we update the values of the burnt fuzzy

set: at iteration k, the burnt land corresponds to the

addition of the burning land and the land already

burnt both at the previous iteration. So, Bk is

computed from Bk−1 and F k−1 as, ∀c ∈ C,

Bk(c) = Bk−1(c) + F k−1(c). (9)

According to Eq. (1), Bk(c) is a fuzzy value.

Then, we update the values on the burning

fuzzy set: at iteration k, Eq. (8) gives the burning

land, unless the newly computed value creates a

violation of Eq. (1), then only the complement to

1 of the local value of B (already computed by

Eq. (9)) is taken:

F k(c) =

{
Sk(c) if Sk(c) +Bk(c) ≤ 1

1−Bk(c) otherwise.
(10)

Last, we update the values on the unburnt fuzzy

set by applying Eq. (1) to iteration k, so using the

complement to 1 with values associated with both

the burning and the burnt fuzzy set at the same

iteration:

Uk(c) = 1−Bk(c)− F k(c). (11)

5.4. Initial condition

At the beginning of the computation, a first state

of the fuzzy sets U, F and B must be input, so

that the first iteration can take place. However

in most cases a fire is lit from a unique point

of ignition, it is possible to consider any kind of

initial condition, with a fire already underway of

any shape, or with several points of ignition.

In this paper, we propose a default setting of an

unique point of ignition located at the center of the

area of interest (see Eq. (12) for U , Eq. (13) for F

and Eq. (14) for B), which therefore are defined

as, ∀c ∈ C

U0(c) =

{
1 if c =

(	n
2 
, 	n

2 

)

0 else
(12)

F 0(c) =

{
0 if c =

(	n
2 
, 	n

2 

)

1 else
(13)
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B0(c) = 0 (14)

where n is the number of lines and columns of the

grid in N+∗.

The reader is invited to remember that any set of

burnt, unburnt and burning terrain can be retrieved

or handcrafted before being included in the com-

putation, thus enabling to consider any scenario

that may occur or the simulation of which could

be of interest. Some examples of different initial

condition will be shown in the next section.

6. Examples

In this section, we show some examples of fire

evolution. All examples are set in different loca-

tions around the city of Corte, France.

Figure 10 shows the evolution of all three fuzzy

sets in a series of iterations, as well as in their final

state. Each column represents an iteration while

the last column shown the final state of both burnt

and unburnt fuzzy sets. As evoked in Section 5.4,

Fig. 10. Various steps of the computation of fire prop-
agation from initial condition presented in section 5.4,
with a wind at 60 degrees and a wind speed of 10 km/h
(black area is maximum score, white is minimum)

many cases of initial condition are possible, and it

is possible to shape it as wanted (for instance to

reflect a state in a fire evolution).

Similarly with Figure 10, the evolution of wild-

fires taking as initial condition two different con-

figurations is shown in Figure 11, with the two

separate ignition points and in Figure 12, with a

chevron-shaped fire front. In each example, the

terrain varies, as well as the wind direction and

speed.

Fig. 11. Various steps of the computation of fire prop-
agation, with a wind at 200 degrees and a wind speed of
20 km/h

Fig. 12. Various steps of the computation of fire prop-
agation, with a wind at 45 degrees and a wind speed of
40 km/h

7. Conclusion

In this paper, we use fuzzy logic to model the

propagation of a wildfire on a given terrain. In-

deed, uncertainty is inherent in the spread of a fire,

which depends firstly on wind speed and direction,

and on the topography. This latter can be deduced

from a Digital Terrain Model of the area.

Our approach consists in an iterative process

that computes the three possible states of the land

subject to a fire, namely unburnt, burnt and burn-

ing areas, as 2D fuzzy sets. Their membership

values represent the possible spread of a wild-

fire considering its natural evolution and allow

considering the uncertainty of the propagation.

To propagate the fire, we selected carefully from

the literature the possible parameters for modeling

the individual effects of wind and topography and

compute their combined effect at each iteration.

In this work, we selected the minimal data

needed, i.e. the wind parameters and a DTM. This

gives an approximation of the fire propagation that
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can be used worldwide even when historic data

are not available.This simulation will be used in

crisis management systems to recommend public

buildings that should be protected and possibly

evacuated regarding the spread of the fire at given

times.

Future work includes considering the simula-

tion of other concerns for first responders in order

to provide them with a versatile crisis manage-

ment piece of software.
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