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AI algorithms can help detect anomalies and identify failure modes under specific conditions, making them valuable 
tools in maintenance management. However, there is no consensus on which of them is the most effective because 
each author builds a different architecture based on the main deep learning models, changing functions, parameters 
and normalizations, and with different databases, making a fair comparison between the models impossible. To 
address this issue, this work proposes a brief review using the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) methodology to identify works in the literature that perform intelligent diagnostics 
on available datasets of rotating machines using deep learning algorithms. After this review, this work also presents 
new results from the use of models, such as multilayer perception (MLP), auto-encoder (AE), convolutional neural 
network (CNN) and recurrent neural network (RNN), making direct comparisons of the result obtained with the 
outcomes found in the literature after the review. To support the discussions about the results, confusion matrix, 
accuracy and losses’ graphs were generated for all combinations between models and input types applied. 
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1. Introduction 
Prognostics and Health Management (PHM) is an 
approach used in engineering and manufacturing 
to monitor the health of machines, predict when 
they will need maintenance or repair, and 
optimize their performance. The main goal of it is 
to reduce downtime, maintenance costs, and 
safety risks, by enabling proactive maintenance 
and repair actions based on the actual condition of 
the machine, rather than on a fixed schedule or 
reactive response to failures. PHM can be applied 
to a wide range of complex systems, such as 
aircraft, trains, manufacturing lines, and rotating 
machines (Fink et al. 2020; Heng et al. 2009).  

Pumps, motors, turbines, and generators 
are examples of rotating machines that are 
essential for many industrial processes. These 
machines are subject to various stresses, 

including, mechanical, thermal, and electrical 
stresses, which can lead to wear, damage, and 
failure over time. Accurately diagnosing and 
predicting the health of rotating machines is an 
important requirement for ensuring their reliable 
operation and preventing catastrophic failures that 
can result in safety hazards, production losses, 
and environmental impacts (Rezaeianjouybari 
and Shang 2020; Heng et al. 2009). 

Thus, accurate and reliable intelligent 
diagnosis can significantly enhance the 
effectiveness of PHM and improve the overall 
reliability of rotating machines. It involves the use 
of machine or deep learning algorithms to analyze 
the data collected from sensors and other sources, 
identify patterns, and make predictions about the 
health of the machine (Rezaeianjouybari and 
Shang 2020).  
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In the literature, there are some 
intelligent diagnosis models that have been 
developed and applied in practice. However, each 
author designs a specific architecture based on the 
main deep learning models and modifies 
functions, parameters, and normalizations 
according to their problem. Moreover, they also 
use different databases that may have different 
characteristics and quality. This variation in 
approaches makes it difficult to compare the 
effectiveness of different models in detecting 
anomalies and failures and evaluate their 
performance objectively. 

From this scenario, the present work 
performed a brief search to select the main 
datasets related to failures in rotating machines 
referenced in the literature and in the public 
domain. These datasets were then utilized to test 
various deep-learning models with a standardized 
architecture. By doing so, the study aimed to 
analyze the impact of parameters and functions on 
failure detection and determine which models 
performed better through a fair comparison. 

2. Literature Review  

As already mentioned, before applying the 
proposed methods to process different datasets, it 
was necessary to perform a brief review to 
identify the main methods and datasets used by 
other works. This previous step is important 
because it contributes to avoiding the use of an 
irrelevant dataset at the same time which allows 
understanding of the state of the art in this context. 

To perform the search in literature, a protocol 
based on a simplification of the methodology 
Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis (PRISMA) Page et 
al. (2021) was used. The first step in the 
implementation of this tool was the definition of 
databases used to investigate the state of art in 
literature. Normally, two or three databases are 
used Page et al. (2021) but given the brief nature 
of the intended review and the focus on locating 
the most influential works of recent years, which 
normally can be easily found in more than one 
database, was enough to choose a single database: 
the Scopus. After this definition, the next step, 
maybe the most important, was the choice of the 
keywords Page et al. (2021): “deep learning”, 
“bearing fault diagnosis”, “rotating machinery” 

and “intelligent diagnosis”. To further narrow the 
results some filters also were applied: only peer-
reviewed articles published and written in English 
were considered. 

The implementation of this protocol resulted in 
the construction of a network that supports the 
identification of the most influential works, 
besides allowing the clustering of these works in 
subnetworks, improving the understanding of the 
scopes of their contributions. Fig. 1 shows the 
first network generated from the search in 
literature. 

 

 
Fig. 1. Network built from citation analysis between the 
work found in literature search. Each color is assigned 
to a subcluster while articles not correlated to any other 
are in gray. 
 

From Fig. 1, was possible separate the works 
in two different categories: those works that 
compose the central cluster and those that are not 
related to any other. This second group usually 
represents works totally or partially unrelated to 
the topic and can be filtered to keep the focus on 
the main tools used. The application of this 
second layer of filtering results in the final layout 
used in the analysis, shown in Fig. 2. 
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Fig. 2. Central cluster obtained after the application of 
the second layer of filtering. 
 

Without deep changes after the second 
filtering, Jia et al. (2016) remain as the most 
relevant work found. This occurs because this 
work is one of the first to present deep neural 
networks as a tool to process massive datasets. 
Due to this, it is a work commonly cited by others 
in the construction of the problem. Chen and Li 
(2017) and Shao et al. (2017b) also present great 
relevance, being one of the first to apply an auto-
encoder to process the datasets. Posteriorly, Shao 
et al. (2018) and Sun et al. (2017) continue to 
propose an implementation of methods based on 
auto-encoders, the first exploring different 
particularities in activation functions to optimize 
the results obtained while the second evaluating 
the impacts of data compression on results. 

Another work worthy of mention is Zhang et 
al. (2019) which proposes a residual learning 
algorithm to improve network training. A critical 
bottleneck in data processing is due to the use of 
larger data sequences. Moreover, despite Li et al. 
(2020) not appear among the top 10 most cited, 
this work also presents a high impact which can 
be associated with the interesting proposal 
presented in the work: a novel deep learning 
method for rotating machinery fault diagnosis, 
allowing the creation of artificial samples for 
algorithm training. Moreover, this work also 
compares Gaussian noise, masking noise, signal 
translation, amplitude shifting and time 
stretching. The main dataset used is the Case 
Western Reserve University (CWRU) and to 
process it, different methods were used and 
compared, such as Simple Neural Network (NN), 

Convolutional Neural Network (CNN), and 
Recurrent Neural Network (RNN). Besides the 
CWRU dataset, other datasets also were used as 
in Yang et al. (2021) propose the utilization of an 
auto-encoder model, aiming to learn important 
features from limited raw vibration signals, to 
build a framework, performing tests using the 
Southeast University Gearbox Dataset (SEU) 
dataset. 

Another model applied to CWRU and 
especially based on a CNN is presented in Zhao 
et al. (2020). To validate the proposed model the 
author performs a direct comparison between this 
model performance and other algorithms with and 
without a pre-processing of the dataset. Despite 
Tao (2020) proposing a solution to a dataset not 
used in this work, the author implements a pre-
processing step based in the short-time Fourier 
transform (STFT) also used in the present work. 

Other works as Tang et al. (2020), that makes 
a comprehensive comparison between several 
techniques, or Cheng et al. (2021), which 
combines a convolutional neural network with a 
local binary convolution layer to improve 
performance, are fundamental to a complete 
understanding about the topic. To reaffirm the 
CNN as an important processing tool, Cao et al. 
(2022) present an unsupervised domain-share 
CNN aiming to simultaneously extract the 
domain-invariant features from the source domain 
and the target domain. Lastly, another application 
of autoencoders was presented by Wu et al. 
(2021) that evaluated the performance of the 
processing with models which kept a dependence 
between the fault diagnosis and labelled data, as 
CNN implementations. 

One of the most extensive works found is Zhao 
et al. (2020) which explores other datasets such as 
JNU Bearing Dataset, XJTU-SY Bearing Dataset, 
UoC Gear Fault Dataset and PU Bearing Dataset. 
Zhao et al (2020) also use different framework 
models applied to these datasets as Auto-Encoder 
and CNN. The variety of methods and datasets 
used to set this work as one of the most important 
references for the present study. 

 
3. Methodology  
As noted, PHM has increasingly relied on deep 
learning as a critical tool. This is due to deep 
learning algorithms have shown remarkable 
success in absorbing complex patterns in the 
sensor data and providing insights into the 
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underlying causes of equipment failures. 
However, it is not simple to say which deep 
learning model is the most suitable or to make any 
other type of comparison when using different 
parameters, functions, and databases. 

Therefore, the objective of this work is 
to be able to equate deep learning models so 
algorithms that are more persuasive and 
appropriate for specific situations can be built. 
The four main deep learning models chosen for 
testing with this purpose were: Multilayer 
Perceptron (MLP), Convolutional Neural 
Network (CNN), Recurrent Neural Network 
(RNN) and Autoencoder (AE). In general, the 
architecture of each model will be kept the same 
for tests with more than one database. A concise 
summary of the models and the way the tests were 
conducted will be explained as follow. 

Before anything else, the data was 
preprocessed in 5 different ways. The first form 
of preprocessing considers the time domain, 
which means the data were used without any 
transformation. In the second, the data are adapted 
to the frequency domain using the Fast Fourier 
Transform - FFT. In the third form of 
preprocessing, the Fourier transform is not 
applied for the complete duration of the signal but 
considering small segments or frames using the 
Short-time Fourier Transform (STFT) and leaving 
the data in the Time-Frequency domain. 
Continuous Wavelet Transform – CWT was used 
to preprocess the data in a fourth way and let them 
in the Wavelet domain. And finally, each 
unprocessed data was reshaped into smaller 
images in a preprocess called slicing image. 

After being preprocessed, each of the 
five ways of inputting the data was tested in the 
models under study. Initially, MLP was tested 
because it is a basic machine learning model 
consisting of multiple layers of the perceptron. 
The model is a supervised process and is trained 
through three phases, including generating an 
output, comparing it with the actual classification 
of data, and adjusting model weights using 
backpropagation (Hashem Samadi et al. 2023).  

Training an MLP also involves dividing 
the dataset into smaller batches, enabling more 
efficient computation and frequent weight 
updates. The process is repeated multiple times 
(epochs) until the model improves and 
approaches the perfect result. Tests with the MLP 

for this research were conducted varying the 
number of layers, epochs, and batch size. 

Similarly, the CNN model specializes in 
pattern recognition, was tested (Géron, 2019). In 
summary, CNN operates by utilizing a filter (also 
known as a kernel) to scan the input data in search 
of a specific pattern. The filter passes over a small 
section of pixels, generating a convolution each 
time, which allows for the identification of the 
desired pattern. In mathematical terms, 
convolution refers to an operation that generates 
an output by modifying the shape of one object 
through another object. 

There exist certain mechanisms that 
facilitate the tuning of the CNN model. Besides 
varying the number of epochs and batch size, the 
experiments with CNN for this research were 
carried out with variations in the kernel size and 
the number of classification, convolutional, and 
max pooling layers. Pooling is another adjustment 
mechanism that seeks to eliminate noise and make 
only meaningful information pass through the 
neural network.  

This research made experiments also 
with a RNN model. RNNs are neural networks 
that incorporate cycles/loops to enable past 
information to persist within the network and 
influence current information. Essentially, this 
type of network can be seen as numerous replicas 
of the same neural network. However, each copy 
transmits a different message to the following 
network (Olah 2015).  

The batch size and the number of epochs 
were the only characteristics that varied for the 
tests with the RNN models. 

Finally, tests were carried out with AE 
models. This kind of deep learning model 
conducts two operations on the data: encoding 
and decoding. The encoding phase compresses 
the input data, thereby reducing its dimensionality 
to a single dimension. Conversely, the decoding 
phase aims to reconstruct the original input data 
by decompressing it. Throughout the reduction 
and decompression process, the goal is to retain 
as much significant information as possible while 
minimizing error and noise. As an unsupervised 
learning model, it is frequently employed as the 
foundation for generative models (San Martin et 
al. 2019). Experiments with the variation of 
kernel size and epochs parameters were made for 
this research.  
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4. Dataset description 
In view of this, six datasets related to the 

rotating machine were selected to this research. 
The two main selection criteria were: being 
publicly available and being commonly cited in 
the literature. More than one database was chosen 
to encompass diverse data types, thereby 
producing impartial and authentic comparative 
outcomes. A brief description of the databases 
under study is given below. 

The JNU datasets (JNU, 2019), provided 
by Jiangnan University, consist of three vibration 
datasets of bearings with different rotational 
speeds, and the data were collected at 50 kHz. 
They contain a healthy (healthy) state and three 
failure modes which include inner ring failure, 
outer ring failure, and rolling/rolling element 
failure. Therefore, the total number of classes was 
equal to twelve according to different working 
conditions. 

The datasets from the CWRU (Case 
Western Reserve University. Bearing Data Center 
Websitesite 2023) were sourced from the Bearing 
Data Center at the university. The data of 
vibration were obtained from normal bearings, 
bearings afflicted with single-point defects 
(single-point drive), and fan end defects (fan end 
defects) caused in the laboratory. The 
experiments were conducted under four varying 
engine loads (engine rotation speed in rpm). 

The University of Connecticut (UoC)  
(Cao 2018) gear failure datasets were provided by 
the university itself. The data were classified into 
nine categories (one healthy state and eight failure 
states) to test performance. 

The SEU (“Mechanical-Datasets” 2018) 
gearbox datasets were provided by Southeast 
University. They contain two subsets of data, 
including a bearing dataset and a gearing dataset, 
which were both acquired in the simulator. 

The Machinery Failure Prevention 
Technology (MFPT) (Bechhoefer 2012) dataset 
was provided by the Society for Machinery 
Failure Prevention Technology. They consist of 
three sets of bearing data that have been classified 
into 15 categories (one health state and 14 failure 
states) according to different loads (which 
influence the mode of operation). 

And lastly, the Paderborn University 
(PU) (Universitat Paderborn 2016) datasets were 
provided by the Paderborn University Bearing 
Data Center. They consist of 32 sets of current and 

vibration signals. The motor current signal from 
an electromechanical drive system is used for 
bearing diagnostics. 

5. Results 
As mentioned before, the data from the 

six databases under study were preprocessed 
using time domain, FFT, STFT, CWT, and 
slicing. Then, one hundred tests were executed to 
each dataset. Each model (MLP, CNN, RNN, and 
AE) went through five test categories, and for 
each category associated with a preprocessing 
type, five variations in specific parameters (such 
as the number of layers, epochs, batch size, etc.) 
were tested five times. 

The metric chosen to evaluate the 
performance of each model given the variations in 
parameters and database was accuracy. It is 
obtained by dividing the number of correct 
predictions by the total number of predictions and 
represents the ability of a trained model to predict 
results for new data. The accuracy of the models 
will be analysed first individually for each 
database and then in a more general way. 

For the JNU database, the model that 
showed the highest accuracy, among all the one 
hundred variations tested, was the MLP. One 
point that attention should draw to how good the 
results referring to the preprocessing done in FFT 
and STFT are in relation to the results generated 
from other forms of preprocessing, even for 
different models. In Fig. 3 we can compare each 
type of preprocessing through the highest 
accuracies generated using them in MLP. Another 
interesting aspect is the architecture that presents 
the best result is in this scenario (MLP with data 
imputed in the frequency domain) and has a 
variation of up to 3% of accuracy with different 
function parameters (number of layers, epochs, 
and batch size). 

 
Fig. 3. Analyzing the preprocess methods on MLP in 
JNU 
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It is impressive how well the RNN 
model fits with the CWRU database, regardless of 
the type of pre-processing as illustrated in Fig. 4. 
For comparison purposes, the highest accuracy 
values for the RNN were always close to 99% 
while for the MLP the maximum accuracy was 
87%. For the other models, the pre-processing 
using STFT presents the best results.  

 

Fig. 4. Analyzing the preprocess methods on RNN in 
CWRU. 

The UoC is a more complex database, 
where each parameter makes a difference in the 
accuracy of the models. It is highlighted how 
much the pre-processing was able to change the 
result of the models as shown in Fig. 5 and Fig. 6 
respectively. Keeping the same scenario of 
parameters, in the MLP the accuracy was 92% for 
pre-processed data in the frequency domain to 
11% in the time domain. In the RNN, the accuracy 
was 92% for pre-processed data in the time 
domain and 12% in the time-frequency domain in 
the same scenario of parameters. In other words, 
there is no constancy with the resulting values of 
accuracy of the models to assert which type of 
architecture best fits the UoC dataset. And this 
may be linked to the complexity of the data. 

Fig. 5. Analyzing the preprocess methods on MLP in 
UoC. 
 
 

 
Fig. 6. Analyzing the preprocess methods on RNN in 
UoC. 
 

The SEU database also showed low 
accuracy results in general. The lowest accuracy 
observed was only 4% for preprocessed data in 
the STFT domain when utilizing RNN, and even 
lower at 2% for preprocessed data in the time 
domain or when using slice images with MLP or 
CNN. SEU can also be considered a complex 
database. 

Differently, the MFPT database 
presented a consistent average and high-accuracy 
results for most models. Its worst model was the 
AE but still, the accuracy values were on average 
29% regardless of the type of pre-processing.  

The last analyzed database was the PU. 
Most of the models presented considerably 
satisfactory results. The lowest results among the 
one hundred tests performed with the different 
types of variations came from the RNN models, 
reaching an accuracy of 17%.  

Observing the databases under study as 
one, a phenomenon is noticed. The accuracy of 
the models is adjusted as some parameters of 
basic functions of deep learning models are 
changed, such as the number of layers or the size 
of the batch, for example. However, even 
changing these parameters, the difference in the 
accuracy value of each of the architectures with 
different parameters does not reach 10%. In other 
words, changing the parameters of basic functions 
of deep learning models is not a sufficient factor 
to make one model better than another.  

However, the processing time is 
different (see Table 1). Models with more layers 
or larger batches tend to take longer to train and 
test data, consuming more computational 
resources. This can be a limiting factor for 
choosing the most appropriate model for each 
problem. Therefore, in addition to accuracy, 
processing time must also be considered as an 
evaluation criterion for deep learning models. 
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Table 1. Analyzing the time on MLP model in 
MFPT 

 
Furthermore, it is evident how much the 

test results reinforce the importance that adequate 
data pre-processing influences the accuracy of a 
model. Therefore, seeking to have minimum 
knowledge about the data and how they were 
extracted to choose a pre-processing method is a 
fundamental strategy that affects the performance 
of a model and determines how assertive it will be 
in making predictions.  

In general, the RNN and CNN models, 
as well as the data that were pre-processed using 
FFT and STFT, were the ones that presented the 
highest accuracy values among the four models 
tested in the six databases under study. A likely 
explanation for this is that the worked failure data, 
mostly obtained from accelerated wear 
experiments, make sense in sequence, and must 
have a pattern before failure. 

6. Conclusion 

In conclusion, this research presented a study on 
the application of deep learning models for 
intelligent diagnosis of failures in rotating 
machines, which is a key component of 
Prognostics and Health Management (PHM). 
PHM is a valuable approach for ensuring the 
reliability and availability of machines by 
monitoring their health condition and predicting 
their remaining useful life. To achieve this, 
intelligent diagnosis models use data from sensors 
and other sources to detect and classify faults in 
the machines. However, there is no consensus on 
the best deep learning model or data 
preprocessing method for this task, as different 
authors use different architectures, parameters, 
and functions in their models.  

Therefore, it was conducted a 
comparative analysis of four deep learning 
models (MLP, CNN, RNN, and AE) using a 
standardized architecture and six main databases 
related to failures in rotating machines. It also 
evaluated the impact of different data 
preprocessing methods and 5 types of input data 
(such as time domain, frequency domain, time-
frequency domain, wavelet domain, and slicing 
images) on the performance of the models.  

The results showed that RNN and CNN 
models outperformed the other models in terms of 
accuracy and that data preprocessed using FFT 
and STFT yielded better results than data. These 
findings can provide useful insights and guidance 
for researchers and practitioners who want to 
design effective deep learning models for 
intelligent diagnosis of failures in rotating 
machines as part of PHM. 
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