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State of health (SOH) is adopted as a key predictor in the battery management system to ensure the safety and 
reliability of electric vehicles. In this paper, based on incremental capacity (IC) curves and long short-term memory 
network (LSTM) with Bayesian optimization, we propose a method for SOH estimation of lithium-ion batteries. 
Firstly, IC curves are obtained and health features are extracted from partial IC curves. Secondly, LSTM model is 
established to capture the mapping relationships between health features and SOH. Thirdly, Bayesian optimization 
is applied to automatically select hyper-parameters of LSTM. Eventually, the effectiveness and superiority of the 
proposed method are validated on real lithium-ion battery aging datasets from CALCE Prognostics Data Repository. 
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1. Introduction 
Lithium-ion batteries (LIBs) are penetrating into 
the field of electric vehicles (EVs) due to the 
advantages of high energy density, longevity, and 
low cost (Luo et al., 2022). In practice, the 
performance of LIBs degrades with increased use 
and improper handling, which may lead to battery 
system breakdown, even resulting in catastrophic 
disasters (Meng & Li, 2019; Xu et al., 2021). In 
this situation, state of health (SOH) is considered 
as an essential indicator in the battery 
management system. Accurate SOH estimation 
not only guarantees the safety and reliability of 
EV operations, but also prolongs battery service 
life (Meng et al., 2022). 

An essential issue of SOH estimation and 
prognostic is health indicators (HIs) extraction 
and how to construct the mapping relationship 
between HIs and SOH (Wang et al., 2021). 
Geometric HIs based on voltage or current curves 
are also important HI types, which can be visually 
associated with SOH degradation (Guo et al., 
2019). The mechanism of geometric HIs is not 
clear thus limiting their application in practice 
(Tang et al., 2020). Recently, incremental 
capacity analysis (ICA) is used as an effective HIs 

for offline SOH estimation. Zhou et al. (Zhou et 
al., 2023) took the peak value of the incremental 
capacity (IC) curves as HIs to enhance the 
adaptability to different charging regions of the 
degradation model. Li et al. (Li et al., 2019) used 
grey relational analysis and entropy weight 
method to evaluate the importance of  IC features. 
Lin et al. (Lin et al., 2023) considered eight HIs 
extracted from IC, differential temperature, and 
differential thermal voltammetry curves. 
Considering the electricity anxiety of EV users in 
real life, the extraction of IC peaks encounters 
obstacles because it usually relies on the complete 
or specific charging process while users take 
charging process start and end randomly. 

In recent years, deep learning models have 
received extensive attention in lithium-ion battery 
SOH estimation due to their powerful non-linear 
modeling abilities, such as deep neural network 
(DNN) (Obregon et al., 2023), deep belief 
network (DBN) (Niu et al., 2022), convolutional 
neural network (CNN) (Shen et al., 2020), and 
recurrent neural network (RNN) (Zhang et al., 
2021). Long short-term memory network (LSTM) 
has been applied in many fields with excellent 
performance in time series prediction and 
nonlinear mapping (Ardeshiri et al., 2022). 
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Despite their success, the selection of hyper-
parameter remains a challenge to improve the 
accuracy of the deep learning model. 

To cope with the above problems, this paper 
proposes an improved SOH estimation approach 
for lithium-ion batteries based on Bayesian 
optimization and partial IC curves. Firstly, the IC 
curve is calculated with historical monitoring data, 
and partial IC curve is selected considering the 
real charging behavior. Then, LSTM model is 
built to construct the mapping relationship 
between IC and SOH. Meanwhile, Bayesian 
optimization algorithm is incorporated to select 
optimal parameters automatically. 

The remainder of this paper is structured as 
follows. Section 2 presents the proposed LSTM 
model with Bayesian optimization. Section 3 
shows the experimental results of the proposed 
method based on the CALCE battery dataset. 
Eventually, Section 5 concludes the paper. 

2. Methodology  
In this section, we present the methodology of the 
proposed model, including IC curve acquisition, 
LSTM model, and Bayesian optimization.  
2.1. IC curve acquisition 
ICA has been widely used in feature extraction for 
lithium-ion battery SOH estimation. It can 
establish the relationship between the external 
characteristics and the internal electrochemical 
characteristics. Based on the constant current–
constant voltage (CC–CV) charging mode, IC 
curve can be acquired by differentiating the voltage 
relative to the charged capacity as follows (She et 
al., 2020).  

 

where  indicates charged capacity during the 
charging process,  denotes the voltage of the 
battery,  represents the charging current of the 
battery, and  stands for the charging time of the 
battery. 

2.2. LSTM model 
Gradient vanish and gradient explosion are 
domain challenges in traditional recurrent neural 
network. LSTM is proposed to solve the problem 

(Shi & Chehade, 2021). The architecture of 
LSTM is composed of three control gates called 
input gate ( , forget gate ( , and output gate 
( ) to process the long-term dependence of time 
series as shown in Fig. 1. Information can be 
stored in, written to, or read from the cell by 
operating these gates.  

 
Fig. 1. The architecture of LSTM model. 

For the input sequence consisting of partial IC 
data  and the previous hidden state , the 
current hidden state  can be obtained by the 
following chain of equations (Gong et al., 2020). 

 

 
 
 
 
 

Where ,  denotes the 
weights and deviations of forget gate, control gate 
and input gate, and output gate.  and  stand 
for the previous and current cell state, 
respectively.  indicates the sigmoid activation 
function,  .  represents the tanh 

activation function, .  is the 
element level multiplication. 
2.3. Bayesian optimization 
Traditionally, hyper-parameters of deep learning 
models are tuned by experience (Remadna et al., 
2023). Manual adjustment not only is time-
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consuming, but also leads to low accuracy and 
efficiency. To improve the estimation accuracy and 
obtain the optimal solution, Bayesian optimization 
algorithm is proposed to optimize the hyper-
parameters of the LSTM model. We adopt Tree-
structured Parzen estimator (TPE) to reduce the 
burden of hyper-parameter computation, which is 
a type of sequential model-based Bayesian 
optimization algorithm. 

Assume that  represents a combination of hyper-
parameters in LSTM model, Expected 
Improvement (EI) is employed to obtain the best 
set of hyper-parameters can be expressed as: 

 

where  refers probability model 
representing the probability distribution of the 
objective function. 

TPE defines  using two such densities: 

 

where,  repents the probability density 
formed by the value of objective function less 
than , and  is the probability density 
consisting of the remaining objective function 
values. 

TPE sets hyper-parameter γ to be quantile of the 
observed , so that we can obtain: 

 

The EI formula can be derived as follows: 

 

According to Equation (11), it can be seen that 
maximizing the EI means making hyper-parameter 

has high probability under and low 
probability under  (Shen et al., 2022). 
Therefore, TPE obtains the maximum EI of the 
hyper-parameter set  for each iteration. 

3. Experimental Study 
In this section, we introduce the battery dataset 
used in this paper. Based on the experimental data, 
IC curves are acquired and partial is extracted. And 
the configurations of the proposed model are 
presented. 
3.1. Experiment Data 
The experimental data used in this paper is from 
the Center for Advanced Life Cycle Engineering 
(CALCE) at the University of Maryland. A set of 
batteries (denoted as CS35, CS36, CS37, and 
CS38) with 1.1A/hr was selected for the analysis. 
Their cathode material is lithium cobalt oxide 
(LiCoO2). The four batteries were cycled in the 
Arbin Battery Tester 2000 under the same 
experimental condition to obtain the full-life-
cycle data. The experiment was conducted under 
CC-CV protocol. The batteries are charged with a 
constant current rate of 0.5C until the voltage 
reached 4.2 V. The charging stage continues with 
constant voltage and stops when the current drops 
to 20 mA. The batteries are discharged with a 
constant current rate of 1C until the voltage 
decreases to 2.7 V. 

3.2. Partial IC curve 
Fig. 2 shows IC curves at different cycles of CS35. 
It is found that IC curves tend to decrease as the 
number of cycles increases, with the most obvious 
pronounced change in peak. Considering the 
extraction of the peak relies on the complete IC 
curve, which is difficult to obtain in practice, we 
developed a deep learning model based on partial 
IC curve. It can be noticed that IC peak around 
3.9V exhibits a significant change. To improve 
the applicability in practical applications, we 
choose the IC curve within 3.85V-4.00V as the 
input of deep learning model. 

 

Fig. 2. IC curves at different cycles of CS35. 
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3.3. Configurations of the proposed models 
This study utilized Hyperopt package in the 
Python programming language to implement TPE 
Bayesian optimization. Table 1 presents the 
hyper-parameters involved in the proposed LSTM 
model. The hyper-parameters to be optimized 
include lstm units, dense units, and learning rate.  

Table 1. Hyper-parameters involved in the proposed 
LSTM model. 

Hyper-parameters Selection range 
lstm_units (2, 400) 
dense_units (2, 200) 
learning_rate (1e-3, 0.1) 
Optimizer Adam 
Activation function ReLu 
Loss function MSE 

To quantify the estimation performance, the root 
mean square error (RMSE), mean absolute error 
(MAE), and mean absolute percentage error 
(MAPE) are applied as evaluation metrics. 

 

 

 

where  represents the SOH prediction results, 
 denotes the actual SOH, and stands for the 

number of testing samples. 

4. Results and Discussions 
In this section, we take the four batteries of CALCE 
battery dataset as an example to evaluate the 
performance of the proposed model. Meanwhile, to 
demonstrate the effectiveness and superiority of the 
proposed model, we introduced other state-of-the-
art deep learning models for comparison, that is 
LSTM, RNN, and gated recurrent unit (GRU). The 
training set is set to 40% of the total cycle. The 
remaining data is treated as the test set. For a fair 
comparison, LSTM, RNN, and GRU keep the 
same configuration with the proposed model 
without Bayesian optimization. Specifically, 

lstm_unit, dense_units, and learning_rate are set 
as 32, 10, 1e-3, respectively. 

Fig. 3-Fig. 6 presents the prediction results of 
different deep learning models on CS35, CS36, 
CS37, and CS38, respectively. It can be seen that 
the estimation curve of RNN deviates from the 
actual curve. We attribute this phenomenon to the 
limitation of the RNN model cannot store long-
term memory, resulting in a large error in the 
estimation curve. The curve fluctuation caused by 
the capacity regeneration phenomenon is 
especially obvious in the late stage of RNN 
prediction. LSTM and GRU obtained smoother 
estimation results and were closer to the actual 
degradation curve compared to RNN. However, 
the dependence on manual adjustment of the 
parameters makes their estimation performance on 
different batteries widely different. With the 
embedding of Bayesian, the prediction curves of 
the proposed model are more consistent with the 
actual degradation curve. 

 
Fig. 3. SOH estimation results of the different models 
for CS35. 

 
Fig. 4. SOH estimation results of the different models 
for CS36. 
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Fig. 5. SOH estimation results of the different models 
for CS37. 

 
Fig. 6. SOH estimation results of the different models 
for CS38. 

Table 2 exhibits the three evaluation metrics results 
for the four batteries based on different deep 
learning methods. The proposed method shows 
better applicability to all four batteries with the 
incorporation of Bayesian optimization. This also 
can be proved in Table 2, where the RMSE of the 
proposed method does not exceed 3.00 for all four 
batteries.

Table 2. Three metrics results of different methods for the four batteries 

Batter
y No. 

LSTM GRU RNN Proposed model 

RMS
E 

MA
E 

MAP
E 

RMS
E 

MA
E 

MAP
E 

RMS
E 

MA
E 

MAP
E 

RMS
E 

MA
E 

MAP
E 

CS35 3.42 2.69 3.83 3.55 2.38 3.51 4.49 3.07 4.54 2.45 1.66 2.44 

CS36 3.59 2.93 4.20 4.44 3.70 5.26 5.77 4.46 6.49 2.57 2.02 2.88 

CS37 2.27 1.67 2.30 2.81 2.66 3.10 4.30 3.09 4.30 1.65 1.31 1.78 

CS38 3.58 2.62 3.56 2.09 1.70 2.27 3.67 2.81 3.81 0.73 0.56 0.74 

5. Conclusion 

In this paper, an LSTM model with Bayesian 
optimization based on partial IC curve is proposed 
to estimate SOH of lithium-ion batteries. We 
selected IC curve with a reasonable voltage range, 
avoiding the identification of specific features like 
IC peak. Bayesian optimization is incorporated into 
LSTM to automatically select hyper-parameters. 
Experiments based on CALCE dataset show that 
the proposed LSTM framework outperforms the 
other neural network models, such as RNN, LSTM, 
and GRU.  
This paper focuses on dealing with historical data 
without considering the impact of future operating 

conditions on SOH estimation. As discussed by 
(Chang et al., 2022), batteries operating under 
different conditions can lead to dissimilar 
degradation patterns. Accordingly, it is worth to 
consider the dynamics of operating conditions in 
future work.  Furthermore, the combination of 
deep learning models and self-attentive 
mechanisms can be integrated into the proposed 
methodology to improve the estimation 
performance. 
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