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With the increasing complexity of systems, the design and operation of these systems have become increasingly

challenging, necessitating greater expertise from engineers and operators. Ensuring the safety and reliability of

such systems is crucial, however, traditional design methodologies may not prove adequate to manage the growing

complexity of systems. This paper proposes a conceptual approach to designing fault-tolerant complex systems.

The approach extends Model-Based System Engineering (MBSE) with zero-sum game models. These models allow

Adversarial Multi-Agent Reinforcement Learning (Adv-MARL) techniques to explore various strategies, and assess

outcomes. They also have the potential to identify vulnerabilities that can be addressed by iteratively refining the

system design.
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1. Introduction

Over the past few decades, there has been a rapid

increase in the complexity of systems across many

industries, driven by the integration of new tech-

nologies, and the demand for interoperability and

interconnectedness. This tendency is especially

noticeable in safety-critical systems, such as au-

tonomous systems or functional safety systems,

where intricate networks of components and sen-

sors are essential for the system to function as

required. However, as systems become more com-

plex, they also become harder to design and op-

erate, posing significant challenges for engineers

and operators. This is further amplified by the

need to remain compliant with both existing and

emerging regulations and standards. Ensuring the

safety and reliability of these systems is crucial,

but existing design methodologies may not be

sufficient to cope with the growing complexity.

Games have long been used as a tool to develop

and demonstrate strategic thinking and problem-

solving capabilities. For example, chess has been

played for centuries and has been used as a train-

ing tool for military strategists, court officials,

and rulers (Murray, 1913). It has been shown that

games can be an effective way in educational and

training contexts to teach problem-solving heuris-

tics (Trinchero and Sala., 2016) and have positive

effects on cognitive functioning, including atten-

tion, memory, and decision-making (de Aguilera

and Mendiz, 2003). Moreover, games provide a

safe and controlled environment in which learners

can experiment with different strategies and learn

from their mistakes without the risk of real-world

consequences.

This paper proposes a conceptual approach

that extends Model-Based System Engineering

(MBSE) with zero-sum game models, where Ad-

versarial Multi-Agent Reinforcement Learning

(Adv-MARL) can be applied and evaluated using

an existing framework. By integrating the power

of MBSE with Adv-MARL, we aim to provide

a conceptual framework that enables the develop-

ment of advanced and resilient systems capable of

meeting the demands of modern industries.
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2. State of the Art

Games have long been a popular arena for the

development and demonstration of AI and Rein-

forcement Learning (RL) techniques, mainly due

to well-defined environments and clear objectives.

These factors make it easier to compare the per-

formance of AI agents to human players. A land-

mark moment in AI history was the 1997 chess

match between IBM’s Deep Blue and Grandmas-

ter Garry Kasparov, in which a machine defeated

a human world champion for the first time in a

traditional chess game. However, Deep Blue was

extremely resource intensive and highly special-

ized (Campbell et al., 2002).

In a more recent example, DeepMind’s Al-

phaGo defeated Go world champion Lee Sedol

in a five-game match in 2016. AlphaGo utilized

an actor-critic RL technique, here value networks

were trained to evaluate positions, and a policy

network was trained to select moves (Silver et al.,

2016). Silver et al. (2018), proposed a general-

purpose RL algorithm that learns games solely

through self-play. Research has shown that RL

algorithms enable agents to learn interactions, co-

ordination, and tool use through self-play in com-

plex games characterized by long and continuous

temporal dimensions, partial observability, and

vast action and observation spaces (Vinyals et al.,

2019; Baker et al., 2019). Furthermore, OpenAI

et al. (2019) has demonstrated an agent’s ability to

retain and transfer learning from one game version

to its subsequent iteration.

Despite the potential benefits of using AI in

MBSE, there is currently a lack of consistent and

well-defined frameworks to enable the application

of AI in MBSE (Chami et al., 2022). However,

some attempts have been made to use Natural

Language Processing (NLP) to automatically gen-

erate sysML models (Chami et al., 2019; Chen and

Bhada, 2022; Zhong et al., 2023).

3. Concept

This paper proposes to extend the MBSE ap-

proach by leveraging the strengths of both MBSE

and Adv-MARL to enable the design of ex-

ceedingly complex and fault-tolerant systems.

To achieve this, the approach incorporates the

concept of zero-sum game models, which al-

lows adversarial agents to explore various strate-

gies, assess outcomes, and identify vulnerabilities

through self-play that can be addressed by refining

the system design. A significant criticism of AI

lies in the difficulty of interpreting its decision-

making process, which can often be opaque and

challenging for humans to comprehend. By adopt-

ing a zero-sum game paradigm, this issue can

be mitigated by providing a framework for an-

alyzing AI decisions. Games typically showcase

clear rules and objectives, are grounded in an

established mathematical framework that can be

described with game theory, and provides a more

intuitive context that resonates more with humans.

The proposed approach can be applied itera-

tively to meet system requirements effectively,

enhancing the design and operation of complex

systems. The approach also has the potential to

explore system behavior and fault tolerance in

a structured and safe environment. The overall

framework and its fundamental concepts are de-

picted in Fig. 1, providing a visual overview of

the approach.

3.1. Model-Based Systems Engineering

As systems have become increasingly more com-

plex and interconnected, traditional Document-

Based Systems Engineering (DBSE) approaches

have often proven insufficient and MBSE ap-

proaches have become increasingly popular.

MBSE is an approach to system engineering that

relies on models rather than extensive documen-

tation to capture and convey information about

systems from the design and conception phase

and throughout the life cycle (Akundi and Lopez,

2021). However, for large, complex multidisci-

plinary systems, MBSE approaches require sub-

stantial time and effort to develop and maintain.

in this regard, AI can be a powerful tool by

enabling automated model generation, validation,

and optimization, or by assisting in the decision-

making process by processing large volumes of

information.

To present the proposed approach, a simple re-

curring reference example as proposed by Ruijters

and Stoelinga (2015) is introduced. The system



3401Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Fig. 1. The workflow of the proposed approach consists of five steps: 1) MBSE approach, 2) Zero-sum Game

Design, 3) Adversarial Multi-Agent Reinforcement Learning, 4) Evaluation, and 5) Realization.

is a computer system represented by a single dy-

namic fault tree as shown in Fig. 2 The system

consists of a power supply (PS), two processing

units (Ci), and three memory units (Mi). The

system is functionally dependent on the power

supply and the processing units share the spare

memory unit M3.

3.2. Game Design

Designing a zero-sum game that accurately rep-

resents the behavior of a complex system while

remaining abstract enough to apply the proposed

methodology is a significant hurdle that must be

overcome in this approach. However, given the

recent impressive advances in RL and increased

availability of open-source tools, the concept is

believed to show promise.

The reference example has been modeled

as a simple Agent Environment Cycle (AEC)

(Terry et al., 2020). In Multi-Agent Reinforce-

ment Learning (MARL), the most prevalent game

model is Partially Observable Stochastic Games

(POSGs). Within POSGs, all agents execute ac-

tions simultaneously, after which the environment

reacts and dispenses rewards to each individual

agent. However, in AEC games agents can act

sequentially and it can be shown that POSG can

be converted to an AEC game and vice versa

(Terry et al., 2020). The following section outlines

several crucial considerations for the proposed

approach.

3.2.1. Time

The introduction of a temporal dimension is an

important aspect from a game, MBSE, and RL

perspective as it greatly influences the complex-

ity and difficulty of the proposed methodology.

In the case of games, time can act as both a

resource and a constraint that directly influences

how a game is played. While in MBSE, it may

be necessary to consider time-dependent factors or

analyze the steady state behavior of a system. For

RL algorithms long time horizons are particularly

challenging (OpenAI et al., 2019) as it increases

the number of cycles per game, making RL expo-

nentially resource intensive.

In the reference example, the temporal dimen-

sion is represented as discrete time steps with a

fixed interval Δt, such that time is a function of

the total number of actions taken tn = nΔt.

In addition, the time horizon is constrained by

introducing a maximum limit of 50 actions per

game, which corresponds to the final time step, T.
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Fig. 2. Recurring example dynamic fault tree, adapted from (Ruijters and Stoelinga, 2015).

Fig. 3. AEC diagram.

3.2.2. Observations

Observations refer to the information an agent

receives from the environment or other agents and

is used to inform actions taken. Large or partially

observable observation spaces also introduce chal-

lenges to the proposed methodology. Partial obser-

vations force agents to make suppositions (Ope-

nAI et al., 2019) about the environment and adver-

saries, while large observation spaces complicate

the process of identifying relevant observations

and relationships.

In the reference example, the observations are

represented as a vector �O(tn) = (A,B,C, ..., L)

where each binary component corresponds to a

basic event shown in Fig. 2 and indicates whether

the event is active or inactive at the specified time.

3.2.3. Actions

Actions refer to the decision made by the agents in

response to observations at a specific time. Sim-

ilarly to observation spaces, large action spaces

complicate the training process. In some games,

actions may come with a cost of some finite

resource, forcing the agent to consider resource

management when prescribing actions.

In the reference example, the red agents’ ac-

tions activate basic events, while the green agents’

actions deactivate them. In other words, red agent

can be considered a fault instantiator while the

green acts as a fault mitigator. Actions are also

limited by a finite resource, the cost associated

with each action, and the current state of the

game. For the red agent, the cost of activating
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basic events is inversely proportional to the basic

event probability, while the cost for the green

agent’s action is directly proportional to the cost of

restoring the basic event. The basic premise is to

limit the red agents repeated prescription of low-

probability high-consequence events and explore

combinations of basic events that would otherwise

have been difficult to identify. While the green

agent is forced to identify and prioritize vulner-

able areas of the design. There is also included a

latency between when the green agent applies an

action and when the basic event has been inacti-

vated. The state of the game also influences what

actions are possible, for instance, a basic event

currently being inactivated, is not a valid action

for agents until it is in an active or inactive state.

Thus, the possible actions at a specified time

step for each agent i are a function of the state

and resources, denoted as Ai(X(tn), r). Addi-

tionally, the state of the system at a future time

step is dependent on the previous time step and

the chosen action, expressed as X(tn+1) =

f(X(tn), Ai(tn)).

3.2.4. Rules

Rules in a game define the set of constraints and

conditions that govern the interactions between

agents and the environment or win-and-lose con-

ditions for the agents. If agents act sequentially,

the order in which they prescribe actions should

be clarified, or if actions are prescribed simultane-

ously, a method for resolving conflicts or ties may

be necessary. Termination conditions are essential

to define when the game ends. These can include

reaching a particular game state, a time limit, or a

predetermined number of rounds.

In the reference example, the red agent will

always start and wins if the top event is activated,

while the green agent wins if the top event is

inactive for the duration of the game.

3.2.5. Objectives

In RL, the objective of an agent is typically to

maximize a numerical value by learning the rela-

tionship between its actions and the associated re-

wards or penalties. This learning process is guided

by a specific algorithm and defined reward func-

tions. Balancing exploration and exploitation is

a critical aspect of RL, as agents must decide

when to explore the prescription of new actions

to discover potentially higher rewards or exploit

known actions with expected high rewards (Ishii

et al., 2002). Conceptually, this balance can be

likened to a Depth-First Search or Breadth-First

Search in the exploration of an optimal solution.

In the reference example, the red agent is re-

warded when the top event is activated and the

game concludes. The green agent gets rewarded

for each cycle the top event is inactive. If an

agent wins, the remaining resources get added as

a reward.

3.3. Training

The training process is essential for enabling

agents to learn the connections between pre-

scribed actions, observations, and rewards thus de-

veloping their decision-making capabilities. Dur-

ing the training phase, agents interact with the

environment by prescribing actions and observing

the resulting observations and rewards in a cycle

as shown in Fig. 3. The exact learning process is

dependent on the algorithm and hyperparameters.

A number of different techniques can be used

to improve the training process such as batching

(Hafner et al., 2017), curriculum learning (Wang

et al., 2022), or reward shaping (Hu et al., 2020).

4. Discussion

Evaluation of the proposed approach is highly

dependent on implementation and will require

an extensive and collaborative effort to demon-

strate its effectiveness compared to existing design

methodologies and advance the state of the art.

As such, this evaluation is limited to a qualitative

assessment of its potential benefits.

The proposed approach has the potential to ad-

dress some of the challenges presented by increas-

ingly complex systems. The inclusion of a zero-

sum game paradigm allows for effective, safe, and

controlled exploration of system fault tolerance

and behavior, potentially leading to more robust,

efficient, and reliable system designs. The zero-

sum game paradigm also increases transparency

and provides a framework for the evaluation of
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game outcomes for trained agents. Such as de-

termining if the design is biased towards spe-

cific agent objectives using established game the-

ory principles such as the identification of Nash-

equilibrium points. The approach might also syn-

ergize with the use of AI techniques in other areas

of MBSE, potentially enhancing various aspects

of the system engineering process and further im-

proving the overall design and operation.

Although the proposed approach may have sig-

nificant potential, it is important to note that it also

has limitations. Similar to models of real-world

systems, the zero-sum game paradigm employed

in this approach is an abstraction that may not

capture the complete system behavior. Addition-

ally, while the use of a zero-sum game paradigm

may increase transparency, the inner workings of

an agent’s trained model remain poorly under-

stood. The Adv-MARL approach may also be

more suited to evaluate undesired events caused

by a malicious third party than stochastic unde-

sired events.

5. Further Work

The proposed approach presents numerous inter-

esting opportunities for future work. One avenue

is an automated solution to translate large sets of

models representing a complex system into a zero-

sum game. Evaluation and redesign of the system

based on game outcomes could also be a direction.

Input models, game design, learning algorithms,

and neural network architectures are assumed to

be highly correlated with applicability and are

another interesting direction. Additionally, inves-

tigating more complex input models with larger

observation and action spaces and expanding the

method’s applicability to a wider range of system

design problems or MBSE-related topics.
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