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The seemingly exponential increase in technological advances and increased globalization forces companies to
optimize their maintenance and production activities to remain competitive. This paper proposes a novel Risk-Based
Maintenance (RBM) and production decision-making support methodology for manufacturing assets, emphasizing
just-in-time manufacturing. The proposed methodology uses historical machine log data to construct a Discrete-
Time Markov Chain model (DTMC). The model is then used to evaluate production risk and consider preventive
maintenance during the production setup. Probabilistic model checking is applied for the DTMC evaluation. The
applicability of the developed method is demonstrated in a real-life case study, where production logs from the
semi-automated cutting- and crimping machine are evaluated.
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1. Introduction

From the mid-18th to the early 19th century,

companies have been pursuing technological ad-

vancements to gain a competitive edge. Eras of

significant technological breakthroughs are re-

ferred to as industrial revolutions, characterized

by the widespread adoption of paradigm-shifting

advances. With each revolution, the complexity

and variety of physical assets have significantly

increased (Poor et al., 2019), necessitating the

development of maintenance strategies (Khan and

Haddara, 2003), particularly in the context of Just-

in-time (JIT) production. In JIT, unexpected stop-

pages can pose significant threats to profitability,

making maintenance strategies critical to min-

imize disruptions (Rivera-Gómez et al., 2019).

This is especially true today, as businesses con-

tinue to rely heavily on advanced technologies to

drive growth and efficiency.

Maintenancea has been influenced by produc-

tion in three key aspects: avoiding unexpected

failures, minimizing maintenance downtime, and

maintaining product quality. Maintenance objec-

tives are defined as assigned targets for mainte-

nance activities (EN 13306, 2017). Targets for

maintenance activities may include traditional

Key Performance Indicators (KPI) such as avail-

ability, cost reduction, or asset value retention,

a”Combination of all technical, administrative, and managerial

actions during the life cycle of an item intended to retain it in

or restore it to a state in which it can perform the required

function” (EN 13306, 2017)
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but increasingly, include safety and environmental

factors (Khan and Haddara, 2003). Historically,

maintenance actions are carried out to retain or

restore the state of an asset and refer to preventive

actions, and corrective actions respectively (Wang

and Miao, 2021).

However, Maintenance trends are shifting to-

wards predictive maintenance (PdM), which is a

key enabler for Industry 4.0 (Bousdekis et al.,

2019) and an integral part of Maintenance 4.0

(Cachada et al., 2018). Successful implementa-

tion of PdM faces a series of both organizational

and technical challenges (Roda et al., 2018). For

some assets, significant modifications may be re-

quired for a successful PdM implementation and

thus be difficult to justify financially. Therefore,

a Risk-Based Maintenance (RBM) strategy can

be an attractive alternative. This paper introduces

a methodology for supporting maintenance and

production decision-making for manufacturing as-

sets using observable Risk Indicators (RI) and ma-

chine log data to construct Discrete-time Markov

Chain models that evaluate risk and prioritize pre-

ventive maintenance and production activities.

In the next section, we briefly introduce the

concept of risk and RBM. The rest of the paper

is structured as follows: Section 3 presents the

proposed methodology. Section 4 provides a real-

life case study demonstrating the application of

the methodology. Finally, Section 5 contains the

discussion and summary of the paper’s findings.

2. Related works

2.1. Risk definitions

Risk is a concept that has no unified definition and

has been described across disciplines in various

ways. Aven (2012) has classified risk definitions

into nine categories and traced the development

of six categories that originated from de Moivre’s

expected value definition of 1711 shown in equa-

tion 1, which is still commonly used in decision

analysis (Aven, 2012).

Risk = Probability × Consequence (1)

Kaplan and Garrick (1981) argues that one

cannot equate a low-probability high-consequence

scenario with a high-probability low-consequence

scenario and defines risk as the answer to the

three questions: ”What can happen?”, ”What is

the likelihood of that happening?”, ”What are

the consequences?”. Formally, the risk is a set

of triples comprising scenario si, probability of

occurrence pi, and consequences xi (Kaplan and

Garrick, 1981) as shown in equation 2.

R = {〈si, pi, xi〉}, i = 1, 2, ... , N (2)

2.2. Risk-Based Maintenance

Risk-Based Maintenance (RBM) has been stud-

ied in the literature for over three decades. Chen

and Toyoda (1989) has proposed an incremental

risk-based strategy for maintenance scheduling,

while the American Society of Mechanical En-

gineers (1991) began the development of Risk-

Based Inspection (RBI), and maintenance guide-

lines in 1991. More recently, Khan and Haddara

(2003) suggested a methodology consisting of

three components for RBM: risk estimation, eval-

uation, and maintenance planning. The methodol-

ogy uses Fault Tree Analysis (FTA) to determine

the probability of undesired events and optimizes

preventive maintenance to adhere to risk accep-

tance criteria. Arunraj and Maiti (2007) refined

the methodology and several methods to priori-

tize and optimize the maintenance planning com-

ponent have been proposed (Arunraj and Maiti,

2010; Wang et al., 2012; Jamshidi et al., 2015).

To address the fundamental deficiency of the

previously mentioned method’s inability to cap-

ture dynamic risk during operations, Bhandari

et al. (2016) developed a methodology for Dy-

namic Risk-Based Maintenance (DRBM) using

Bayesian Networks (BN). In this paper, we aim to

show that a DRBM methodology using DTMCs

may also be used for manufacturing assets and a

DRBM methodology allows for decisions made

on the basis of observable RI during operations.

3. Methodology

This section outlines a proposed model-based

decision-making tool for risk-based maintenance

and production scheduling. The methodology
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considers risks associated with failures, as well as

normal and/or degraded states during operation.

The methodology allows for consideration of the

transient nature of risk and evaluation of cumula-

tive and time-dependent risk. The methodology is

demonstrated using machine log data, wherein a

tree of DTMCs is created and where each branch

corresponds to observable RI during the setup pro-

cess. The methodology evaluates whether the ex-

pected risk during the production process meets or

exceeds the risk acceptance criteria. The proposed

methodology is outlined in Fig. 1 and detailed in

the following subsections.

Fig. 1. Workflow of the proposed methodology,
adapted from Khan and Haddara (2003); Arunraj and
Maiti (2007).

3.1. State Identification

To identify the states of a process, the first step

is to define the process scope and identify all

relevant and non-relevant states, which requires

expert knowledge of the real-world process. Non-

relevant states can be used to filter out noise from

the dataset. The states are classified into Risk

Indicator States (RIS), Hazardous States, Reward

States, or Safe States.

3.1.1. Hazardous States

Hazardous States refer to states that may contain

hazards that have the potential to cause harm to

assets, the environment, or personnel. This in-

cludes states that may appear hazard-free from

a technical standpoint. For example, states that

involve human-machine interactions are always at

risk of human error.

3.1.2. Risk Indicator States

Øien (2001) defines Risk Influencing Factors

(RIF) as: ”an aspect (event/condition) of a sys-

tem or activity that affects the risk level of that

system/activity” and RI as the measurable or op-

erational quantifiable definition of a RIF (Øien,

2001). Rausand (2011) defines RI as ”A risk in-

dicator presents our knowledge and belief about a

specific aspect of the risk of a future activity or

a future system operation”. In this paper, a Risk

Indicator State (RIS) is a state where the observed

frequency of occurrence is used to infer the risk

level in the future development of the process,

but the state itself has otherwise no discernible

hazards.

3.1.3. Reward States

In certain processes, particularly those involving

financial aspects, certain states may offer a re-

ward. For instance, in a production process, haz-

ardous states may incur a cost, while the end of

the production state can be rewarded.

3.1.4. Safe States

The safe states are the states with no discernible

hazards and that possess no risk-indicative or re-

ward properties.

3.2. State Risk Estimation

After identifying a process state as a hazardous

state, the associated risk is quantified through

a quantitative risk analysis, typically comprising

scenario development, consequence analysis, and

likelihood estimation.
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3.2.1. Scenario Development

To quantify the risk associated with a specific

hazard, scenarios are developed for each identi-

fied hazard, which may involve several initiating

and hazardous events that can lead to different

undesired consequences. A scenario is essentially

a description of a specific sequence of events from

an initiating event to an undesired consequence

Rausand (2011).

3.2.2. Consequence Estimation

Consequence estimation is conducted for each un-

desired event to identify and quantify potential

harm to assets, the environment, or personnel.

Various models, including dispersion, explosion,

and fire models, can be used for consequence

estimation and quantification. Khan and Haddara

(2003) propose a formula that combines four ma-

jor categories to calculate the total consequences:

system performance losses, financial losses, hu-

man health losses, and environmental/ecological

losses. However, it is debatable to suggest that

human health losses can be quantified and com-

pared to financial or system performance losses.

Therefore, this paper suggests evaluating risk con-

cerning the different damage categories separately

with acceptance criteria.

3.2.3. Likelihood Estimation

Traditional risk methods, such as risk registries,

Computerized Maintenance Management Sys-

tems (CMMS), FMEA, FMECA, Hazop, or FTA,

can be used to evaluate the likelihood of hazardous

consequences associated with a state. However,

this should not be confused with the probability of

encountering the state during the process, which

will be calculated using the DTMC models.

3.3. DTMC Model

3.3.1. Model Tree

Markov chains are stochastic models with the

”memoryless” Markov property, meaning that the

future state is only dependent on the current state,

not the past. To consider RIS, our methodology

uses a tree of DTMC models, with each RIS treat-

ment corresponding to a branch and each leaf rep-

resenting a specific DTMC model. ANOVA can

simplify trees with multiple RISs by determining

the most significant RISs and combinations, al-

lowing for adapted RI definitions and treatments.

See Fig. 2 for an example model tree.

Fig. 2. Example of a model tree.

3.3.2. DTMC Models

After the model tree structure is determined, each

production cycle is assigned to the correct model

to build the transition matrix A. The distribution

of transition times is checked, if they are all expo-

nentially distributed, the process can be modeled

as a Continuous-Time Markov Chain (CTMC).

For DTMC models, matrix A contains the tran-

sitional probabilities for each step, n. Production

processes are assigned to the model corresponding

to the observed RIs, and transitions are added to a

matrix to calculate probabilities expressed as A.

3.4. Risk Evaluation

The goal of this step is to assess if observed RIs

during setup indicate if the process may meet or

exceed acceptance criteria. The appropriate model

is chosen and solved with a probabilistic model

checking tool. This methodology accommodates

two types of risk acceptance criteria: 1) the cu-

mulative risk of the process, representing the total

risk accepted for the entire process, and 2) the nth-

step or time-dependent risk, which represents the

slope of the cumulative risk at a specific time, t
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or at the nth-step. This allows for consideration

of both cumulative risk and risks during certain

intervals, leading to the allocation of risk mitiga-

tion resources accordingly. If observed RIs indi-

cate unacceptable risk, production is not initiated,

and preventive maintenance or other mitigation

measures are taken.

4. Case Study

The proposed methodology is demonstrated on a

semi-automatic multi-product crimping machine

in the automotive industry. After an operator con-

figures the specific product parameters, a sample

is produced, measured, and validated repeatedly

until accepted. Then, automated production be-

gins, with short stops between batches for pack-

aging. Occasionally, micro stoppages occur, and

important parameters are logged. The focus is on

production failures and the effects on the pro-

duction line. The machine log used is from one

location over two weeks, with about 14500 pro-

duction orders. The methodology may be applied

to investigate any type of risk.

4.1. State Identification

This case study focuses on financial and human

health loss risks associated with production fail-

ures, with micro stoppages during setup identified

as possible risk indicators. Fig. 3 demonstrates

how the mean number of failures increases with

the number of micro stoppages. Table 1 lists five

failure states during production and other impor-

tant states. Additionally, the methodology can be

iteratively applied during production, with micro

stoppages serving as risk indicators and allowing

for the expansion of the model tree and update of

appropriate models.

4.2. State Risk Estimation

This case study evaluates financial and human

health loss risks in a production process, with

simplified scenarios and idealized values used for

demonstration purposes. The financial risks are

shown in Table 3. Human health loss is evaluated

using the Lost Time Injury (LTI) metric, which

measures non-permanent injuries resulting in loss

of productive time. Table 2 shows example LTI

Fig. 3. Scatterplot of the mean number of failures
during production and micro stoppages during setup.

values for personnel interacting with the produc-

tion machine during failed states. Real-world data

can be obtained from CMMS, maintenance re-

ports, injury reports, undesired event reports, etc.

The values presented in Tables 3 and 2 are ex-

amples only and do not represent actual company

data.

4.3. DTMC Model

Fig. 4 shows a histogram of the number of orders

and the number of risk-indicative micro stoppages

in the data. In the interest of keeping the model

tree simple, the three treatments of RIS have ini-

tially been defined as the set Eq. 3.

RI = {[0], [1, 10] , (10,∞)} (3)

This results in a model tree with three branches

with one leaf each. Since it can be shown that the

sojourn times are not exponentially distributed,

the process is modelled as DTMCs. From the

machine logs the orders are processed and the

orders are used to build the probability transition

matrices Am for each model m.

4.4. Risk Evaluation

DTMCs were solved with the open-source prob-

abilistic model checking tool Prism, which allo-

cates rewards to states and calculates cumulative

and step-dependent rewards for the models. As
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Table 1. Process States.

Stage State Category Description
Setup Changeover Safe state Start of the setup process
Setup Sample Safe state A sample is produced
Setup Short Fault Risk indicator state Short micro stoppages during the setup process
Setup Learning Safe Validation of produced sample

Production Production Safe state Automated production of a batch of wires
Production End Safe state End of production
Production Short Fault Risk indicator state Micro stoppages during production
Production Machine Failure Hazardous state Machine failure
Production Terminal Applicator Failure Hazardous state Terminal applicator failure
Production Rest failure Hazardous state Failure
Production Other failure Hazardous state Failure
Production Maintenance Hazardous state Maintenance personnel has been called

Table 2. Example values - Loss Time Injury.

State Lost Time Injury
Machine Failure 0.024

Terminal Applicator Failure 0.028
Seal Applicator Failure 0.033

Rest Failures Hours 0.076
Other Failure Hours 0.064

Fig. 4. Histogram of orders and short setup faults.

rewards cannot be set on transitions, the state

space was expanded to include expected transition

times, creating states with state and expected tran-

sition time attributes dependent on the previous

state. States were then rewarded based on these

attributes using Prism, and the results were ex-

ported and calculated using Python. Expected cu-

mulative financial rewards and expected time for

RI treatment one are plotted in Fig. 5. By dividing

the third RI treatment into smaller treatments, Fig.

6 shows that 11 short faults in the setup phase

indicate expected financial loss if the process lasts

longer than 850 seconds. Cumulative LTI for n-

steps of the process is shown in Fig. 8, and n-step

dependent LTI for each n-step is shown in Fig. 7.

Fig. 5. Shows the expected financial reward for the
three treatments.

5. Discussion

We proposed a novel RBM and production

decision-making support methodology for man-

ufacturing assets that assesses risk by observing

certain indicators during setup. The methodology

evaluates cumulative and n-step dependent risk,

allowing for two types of risk acceptance criteria

and identification of when risk is greatest. How-

ever, many RBM techniques today do not consider

transient risk during operations. Our methodology
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Table 3. Example values.

State Description Consequence Likelihood
Machine Failure Production Losses 150 0.3
Machine Failure Replacement of component A 250 0.1
Machine Failure Replacement of component B 3000 0.01

Terminal Applicator Failure Production Losses 200 0.2
Terminal Applicator Failure Production Waste 300 0.1
Terminal Applicator Failure Replacement of component A 3000 0.01

Seal Applicator Failure Production Losses 200 0.4
Seal Applicator Failure Production Waste 400 0.1
Seal Applicator Failure Replacement of component A 3000 0.01

Rest Failures Hours Replacement of component B 4000 0.1
Other Failure Hours Replacement of component B 5000 0.05

Production End Production completed – value created 10 1.0

Fig. 6. Expected profit for a number of treatments to
RIs.

Fig. 7. The n-step dependant LTI.

adheres to de Moivre’s expected loss definition of

risk and can accommodate uncertainties through

Fig. 8. The cumulative LTI.

confidence intervals in Prism. The methodology is

demonstrated on a semi-automatic multi-product

crimping machine, where cumulative risk may be

acceptable, but n-step or time-dependent risk may

exceed acceptable criteria at specific times.
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