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Regarding the modeling of quasi-static systems with minor failures for failure prediction and maintenance, Markov 
models have shown to be very successful. Finite discrete state models can be considered as best practice in this 
domain, often even assumed to be homogeneous. The question arises if Markov models are also capable to model 
resilience of systems including major disruptions, where great fractions of the system and its functionality fail. To 
this end, analytical propositions are made that define model extensions. An initial scalable system is defined, 
including expected refinements and abstractions. In further phases, major disruptions occur. The disruptions can 
cause branching points opening routes to model extensions or abstractions. Also independent of disruptions, new 
states and transitions are introduced or merged for model granularity adoption. Overall system behavior can be 
interpreted in terms of system improvement with or without new system states or functionalities and corresponding 
transitions, reaching the ex-ante system state as before the disruption, reaching a deteriorated system state, or finally 
various degraded and failed overall system states. Definitions such as states, absorbing states and critical transitions 
are reinterpreted or extended to allow for dynamically resolving or abstracting the Markov model. The main results 
are extended definitions and derivations when compared to traditional Markov models. Based on the analytical 
expressions, an example is provided where the formalism could be applied with advantage for autonomous driving 
safety assessment by considering increasing or decreasing levels of resolution of subsystems or subfunctions.   
 
Keywords: Resilience quantification, dynamic Markov model extension, analytical system assessment, branching 
point, hierarchical Markov model, abstraction and refinement.  
 
 

1. Introduction 
Markov models are used in a wide range of 
domains including medicine success prediction 
(Sonnenberg and Beck 1993), predictive 
reliability assessment (Yosri et al. 2021), and 
autonomous driving (AD) safety assessment 
(Nyberg 2018) (Bonderson 2018) (Heinrich, 
Plinke, and Hausschild 2017) (Häring et al. 2022).  

However, limitations of classical Markov 
models are well known, in particular regarding 
state explosion, time-independence of transitions 
if used in their simplest form and last but not least 
the assumption of memoryless transitions(Horeis 
et al. 2020). 

Expandable Markov approaches that allow 
for modification of the overall state space have 
already been used for the realization of AD 
functions (Pouya and Madni 2021). Markov 
subsystem decomposition for a nucelar system is 

described in (Liang et al. 2022). Also the use of 
subsystem models in Petri nets are defined scaling 
approaches (Naybour, Andrews, and Chiachio-
Ruan 2019).  

In the following it is proposed to connect 
Markov models by allowing overall state space 
refinements and abstractions in a controlled way, 
depending on the emerging time history.  

Section 2 gives an overview of the proposed 
approach providing a modelling flow and its 
visualization. In section 3 the modelling approach 
is formalized based on a structural-functional 
system model. Section 4 illustrates for a sample 
AD system the effect of a dominating state 
transition for illustration of the need for the 
proposed approach. Section 5 concludes by 
summarizing the findings of the formal exercise.  

2. Methodology 
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The scaling Markov approach can be divided in a 
sequence of iteratively conducted steps, see Fig. 
1. Fig. 1 shows that after initial conditions the 
probability distribution time history of the 
discrete system states is propagated till a 
refinement or abstraction criterion is met to 
trigger state modification.  

 
Fig. 1. Hierarchically scaling overall Markov system 
model propagation.  

The steps can be summarized as follows:  
1. System definition in terms of hierarchical 

subsystems and/or system function 
definitions. Thus, each overall system state 
can be described by using up to several 
resolution levels (hierarchical system and 
state structure) 

2. System state transitions on system level are 
allowed between subsystems of same 
resolution level.  

3. In addition, system can extend or absorb 
subsystems: system structural transitions, 
system state space extensions, and 
reductions, e.g. based on similar share of 
probability for each state, minimum and/or 
maximum resolution. 

4. Quantification of transitions on system level, 
e.g., using discrete time-independent or time 
depenent transition probability matrix ( ) or 
continuous transition rate matrix ( ), 
respectively (discrete and continuous time 
Markov chains) 

5. Overall system states can be characterized at 
each point in time as initial (only one), 
transient and absorbing (up to several final 
states).  

6. Overall system states can be interpreted in 
addition terms of overall system health, e.g. 
overall system reliably or safety. 

7. Conduct steps 1 to 7 till overall system state 
space is explored, i.e., e.g., sufficient equally 
distributed resolution at all times.  

3. Method details and formalization  
3.1 Scaling Markov state space  
First the scaling state space is presented including 
the cardinality of the subsystems or subfunctions, 

i.e. the number of their possible finite states. To 
this end a hierarchical and scaling structure  is 
introduced in Fig. 2. Fig. 2 represents a possible 
system structure.  

In Fig. 2, each column corresponds to a 
feasible system resolution. The light green 
marked subsystems and the dark green marked 
subsystems represent possible combinations of 
system resolutions given the knowledge of the 
system structure of Fig. 2. In a modelling process, 
some higher resolved areas could not yet be 
realized in terms of, e.g., requiring model 
parameter determination on demand.  

 
Fig. 2. Hierarchical and scaling overall system models.  

The light green overall system is 
obtained from the second column system by 
higher resolving subsystem . For the dark green 
overal system,  is further resolved into  and 

, while  is resolved into  and . In this 
way, only one-step resolution increases in terms 
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of division of subsystems or subfunctions can be 
used to refine system models.  

In a similar way abstractions of system 
models can be constructed, e.g., the second 
column is abstracted from the light green model 
by summarizing  and  in . The dark green 
model is an abstraction of the second right column 
requiring 6 single combination steps.  

The assumption is that at each point in 
time, it is known in which state-space time 
propagation takes place. Within one state space, 
propagation obeys the total law of probability. 
Also, when switching between state spaces 
probability is conserved, as shown in the 
following. 

3.2. Sequence of overall state spaces and allowed 
transitions 
Next, we consider a sequence of state spaces and 
propagations therein. State-space abstractions and 
refinements are introduced. The modeling can use 
state space topology information or probability 
distribution information, e.g. in terms of 
minimum or maximum probability thresholds or 
by requiring comparable resolution.  

We define a sequence of allowed 
product state spaces based on Fig. 2 

 , (1) 

where , 1, 2, … labels an allowed sequence 
of state spaces that increase or decrease 
resolution. The cardinalities of the respective state 
and subsystem state spaces are 

. (2) 
Examples of cardinality numbers from subsystem 
state spaces are given in Fig. 2 showing the rapid 
state explosion, see last line in Fig. 2 according to 
(2). Hence it is desirable that we can extend and 
reduce the Markov state space.  

To define an allowed state space 
extension based on a given subsystem or 
subfunction structure as exemplified in Fig. 2, we 
require that per extension only one subsystem or 
subfunction is further resolved. For instance, in 
Fig. 2 the resolution from the first column state 
space  to the second column  is 
allowed but from  to the light green shaded state 
space  is not. In the latter case 
we have to reach the light green state in two steps.  

Allowed extensions can be characterized 
as replacing one state space of a subsystem or 

subfunction with a product state space of at least 
2 other subsystems or subfunctions,  

,  (3) 

where  and . Allowed 
refinements and abstractions are determined by 
the system structural functional model as given in 
Fig. 2. For instance, when resolving  
to  then  
Note that the sequence of allowed state spaces 
given in (1) is not unique according to the 
transition requirement (3). This can be inferred 
from the different options to reach the dark green 
state of Fig. 2.  

The abstraction or coarsening of the state 
space is achieved by a mapping from right to left 
as described in (3). 

How to distribute probabilities on new 
states when the state space is refined? We observe 
what a suitable labeling of state probabilities 
reveals, see Fig. 3. By construction of the labeling 
of system states the number of subsystems or 
functions considered (Fig. 2) determines the 
number of labels used in Fig. 3.  

 
Fig. 3: State labeling for column states of Fig. 2.  

Fig. 3 shows that if we replace a single 
system or function with 4 states with 3 
subsystems or subfunctions with 4, 3, and 2 states, 
respectively, a single label has to be replaced by 
three labels, see the first and second column of 
Fig. 3. This also happens if the second state space 
(sample label marked blue in Fig. 3) is extended 
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in two state spaces (see the third column of Fig. 
3). Similarly, the last state space of second 
column (sample label marked bold black in Fig. 
3) is expanded in three states.  

3.3. Redistribution of state probabilities for state 
space refinement and abstraction 
More specifically we have for instance to decide 
how to distribute the probability of  at the 
moment of transition to an extended model on the 
state space probabilities , , , 

, , , , …, , 
see Fig. 2. And in the same way for , , 
and . When interpreting for instance  as 
the probability of fully operational on system 
level with no degradation and the column 2 
system of Fig. 2 as a 1 out of 3 system, 2oo3 or 
3oo3 system, then it becomes obvious what 
possible choices can be made. Only  
would fit if one interprets the subsystem label as 
all 3 subsystems or subfunctions are fully 
operational. Similarly, degraded operational 

 could be interpreted, e.g. as a combination 
of , , , and . The 
higher resolved subsystem states and functions 
depend on the system structural-functional model, 
as given exemplary in Fig. 3.  

Also, the quantitative distribution 
depends on the system considered. For example, 
first the transition from  to  is quantified. For 
each overall system state probability 

 we set, using the notation of (2),  

  

 (4) 

The distribution weights are chosen constant over 
time with . To preserve total 
probability, we require that at the point in time 
where the higher resolution is conducted the 
following normalization conditions hold 

  (5) 

For defining the reverse mapping from 
 to  according to (1) and (3), we assume a 

well-defined mapping of each discrete finite 
product state with high resolution to a product 
state of lower resolution 

,   (6) 
where indices are as in (4). For instance, , 
e.g. all subsystems or functions fully operational, 
contributes to the full operational overall state 

 only. These transition modls  can be seen 
as an additional requirement contributing to the 
functional-structural model of Fig. 2.  

The generalization of (4) and (6) reads  

 

 

 

 

(7) 
In this case subsystem or subfunction  and its 
states labeled with index  is refined by using the 

subsystems or subfunctions , , …, 

 and their indices 

 labelling their states.  

General normalization condition reads in 
this case for all structural-functional allowed 
subsystem or subfunction states that are resolved 

 and  

 

  

(8) 
Note that in (7) and (8) the labeling of 

the constant weights could be simplified as for 
each allowed transition in a given sequence 
according to (1) only one state is further resolved 
or a well-defined set of states is abstracted. 
However, the transition weights should be 
provided along with the structural-functional 
model of the scalable Markov model. The 
proposed labeling allows to parametrize all 
allowed transitions in a well-defined way that is 
independent of the sequence that is applied in an 
allowed scaling model sequence according to Fig. 
1. Fig. 3 lists the number of refinements that need 
to be parametrized for the sample structural 
model, which proves to be rather limited.  

The general abstraction can be defined 
by using that each higher resolved discrete finite 
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Markov state can be mapped to a single less 
resolved state  

 (9) 

In summary, for state space refinement 
existing state probabilities for each state are 
distributed on higher resolved state space using 
(7). Abstraction or combination of states to a less 
dimensional state space is conducted using (9). In 
both cases, only one component of the product 
state space (1) is resolved or a set of product 
spaces is removed per resolution step. Note that 
transitions in the sense of (8) and (9) can also be 
used in both directions, respectively.  

3.4. Propagation of time-dependent state 
probabilities within state space 
Now we are in the standard situation within one 
state space  according to (1). In this case, we 
have the overall time-dependent state space 
probabilities labeled as . With (2) 

we can define the single index  such that it 

labels the product states from  to  using  
 

 

(10) 
Based on the state space labeling (10) we 

define an overall system state vector for  as 
. Assuming 

that the transition rates are independent of time 
and assume in addition equidistant small time- 
steps , the following scaling discrete time 
Markov model (SDTMM) can be derived, as a 
generalization of DTMM.  

SDTMM consists of initial conditions to 
start propagation within , in particular also , 

  (11)  

Conditions for refining subsystem state spaces 
can be defined as, e.g.,  
if for any m at earliest  

n≥1 find refinement that reduces  
 most     (12) 

And for coarsening state space, e.g.,  
if for any m at earliest  
n≥1 find abstraction that increases 

most  (13) 
We assume that the propagation is 

conducted until, e.g., (12) or (13) holds. In this 
case, we set . 

For the propagation times 

 used in (12) and (13) we obtain the 
state vectors using the transition probability 
matrix multiplied -times by itself 

   (14) 
where the transition probability matrix elements 
for overall state space  are given by  

(15) 

The matrix elements in (15) are given for 

,  by  

 

 

 
   

    (16) 
The approximation in the last equality of (16) 
assumes that  The condition given in 
(16) ensures that only transitions are modeled for 
which one subsystem or subfunction changes its 
state. This means that it is sufficient to know all 
allowed state transitions on subsystems or 
subfunction level to build the overall transition 
probability matrix (15), e.g., within the 
subsystems of  of Fig. 2.  

The diagonal elements of (15) read 
 

 

f     (17) 

where . This condition ensures 
that the probability flow out of each state is 
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balanced by the reduction of the probability of 
staying in the state. Thus, the sum over all column 
elements of (15) is unity.  

The first element of the vector at the left-
hand side of (14) is for  obtained by 
multiplying the first row of the matrix at the right-
hand side with the column vector, etc. This shows 
that (14) can be derived using the total law of 
probability and assuming that the Markov states 
are independent of each other.  

In a similar fashion, a scaling continuous 
time Markov model (SCTMM) can be derived. In 
this case we replace for instance (14) by  

   (18) 

where the transition rate -matrix (Meyna and 
Pauli 2010) is used. In this case, the transition 
points can be at arbitrary times, and transition 
rates can be time-dependent.  

4. Sample system resolution and criticality 
analysis of dominating state 

4.1. Sample scaling system refinement and 
abstraction 
Table 1 shows a sample AD system functional 
structural architecture that follows the 
requirements introduced in Section 3.1 along with 
Fig. 2 and Fig. 3. It shows an increasing 
refinement of an autonomous vehicle (AV) using 
1, 4, 10 and 24 subsystems with respectively 2 
states or subfunctions that can be considered as an 
example of a sustainable system when compared 
to traditional vehicles, given its potential 
advantages as resource sharing, less carbon 
intensive driving patterns, and reduction of 
accidents. The functional-structural architecture 
used is based mainly on (Behere and Törngren 
2015) (Novickis et al. 2020) (Behere and 
Törngren 2017) (Zhang et al. 2021).  

4.2. Dominating state without application of 
dynamic scaling Markov model 

Fig. 4 shows the effect of a single dominating AD 
state on the probability distribution of all other 
AD states. This is generated by a single constant 
failure rate according to (16) that is increased 
from a level similar as all failure rates in Fig. 4A 
by orders of magnitude till Fig. 4F.  

To show the impact of the critical 
transition on the final probability distribution and 
reliability of the overall AD system, Fig. 4A and 

Fig 4.B illustrate the original distribution with 
non-critical transition rates between states 

 

according to equation (16). In total  
states were considered.  

This is a resolution between level 2 and 
3 of Fig. 2 and of level 2 of Table 1. Here achieved 
by resolving only 10 subsystems or subfunctions 
with 2 states respectively, i.e. . These 
AD subsystems are used: sensor fusion, object 
detection, trajectory planning, motion control, 
ego driver, pedestrian, weather, lighting, traffic 
density, and street geometry. Similarly one might 
consider 5 subsystems or functions with 4 states, 
respectively. Note that the three first standard 
subsystems of level 1 resolution of Table 1 are 
extended with the environment subsystem.  

All the allowed constant transition rates 
according to (16) between other states in plot Fig. 
4A are of the same order ranging from 

 to . Plots Fig. 4B to Fig. 
4F illustrate changes in the probabilities if a 
critical transition rate has the values 

, , , 
, and .  
Reliability is defined as AD system 

being in fully operational states (states with 
failure of none or one component) or fail-
operational states (states with failure of any two 
technical components as well with failure of ego 
driver along and of one environmental 
component). In total there are 925 reachable 
states.  

Fig. 4 was computed using the CTMM 
approach. The redistribution of state probabilities 
clearly shows the effect of the critical transition 
on the overall probability distributions. Whereas 
Fig. 4A and Fig. 4B still show that in the 
asymptotic realm, many states are of the same 
order of magnitude, state probabilities are more 
and more compressed starting with Fig. 4C till in 
Fig. 4F only one asymptotic state remains.  

For practical applications, this implies 
that only little information would be available 
when sticking to the initial state space definition, 
since the AD dominating failure mode is not 
further resolved. This asks for SCTTM approach. 

5. Conclusions 
The formal presentation of even the simplest 
possible realization of the probability distribution 
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time history flow for an up- and down-scaling 
Markov model with exponential transition 
modeling assuming equidistant time steps 

(SDMM) requires that, in addition to the 
structural-functional modelling of the system, the

 
Table 1: Scaling structural-functional state space of an autonomous vehicle including its environment.   

Resolution level 

0 1 2 3 4 … 
Sample number of subsystems, components, subcomponents, and functionalities 

System level 
model 

Subsystem level model Component level model Subcomponent level model Functionality level model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

… 

1 4 10 23 25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

System 

 
 
 
 

Perception 

Sensing and sensor fusion Camera, LiDAR, Radar ADAS (Advanced Driver 
Assistance System) 

GPS/GNSS, Ultrasonic ACC (Adaptive Cruise Control) 
Mapping, localization 

and navigation 
Communication, WIFI AEB (Autonomous Emergency 

Braking) 
IMU (Inertial Measurement 

Unit) 
F/R CW (Forward/Rear 

Collision Warning) 

Semantic understanding 

IoT (Internet of Things), 
V2X, HMI 

LDWS (Lane Departure 
Warning System) 

Object detection and tracking Object detection 

 
 

Decision and control 

 
 

Planning 

Path planning Blind spot detection 
Trajectory planning and 

generation 
ESC (Electronic Stability 

Control) 
Motion planning LKA (Lane Keeping Assist) 

Motion control Park assist (Valet parking) 
Collision avoidance 

 
 
 

Vehicle platform 
manipulation 

 
Execution 

Platform stabilization Trajectory Tracking 
Trajectory execution Speed control 

Driver Monitoring System 
 

Actuation 
Steering EBS (Electronic Braking 

System) 

Throttle ABS (Anti-lock Braking 
System) 

Brakes Predictive braking 
 
 
 
 
 
 
 

Environment 

 
 

Traffic infrastructure 

Surrounding objects: static 
and dynamic 

Obstacle detection 

Traffic signs Traffic sign recognition 
 

Road markings Lane detection 
 

Other road participants 
Other vehicles Vehicle detection 

VRU (Vulnerable Road 
User): pedestrian, cyclist, etc. 

Pedestrian detection 

Weather and lighting Rain, fog, snow, glare, 
darkness, etc. 

Eco maneuvering, 
Night vision 

 
Other characteristics 

Street geometry (highway, 
urban, etc.) 

IAS (Intersection 
Assistant System) 

Traffic density (light, heavy, 
etc.) 

TJC (Traffic Jam Chauffeur) 
 

Fig. 4. Impact of single increasingly dominating transition on overall state space probability time histories. 
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dynamic refinements and extension need to be 
modelled, i.e. how the probabilities at transition 
points are distributed or summarized. Conditions 
and parametrization options for such scaling 
points have been provided. 

It was observed that the number of 
needed scaling models scales surprisingly 
moderately when compared to state space 
explosion numbers when allowing only stepwise 
scaling and can be seen as refinement or 
formalization of the structural-functional 
modelling. Also, within propagation phases 
transient and absorbing states can be identified.  

Further work could further extend the 
initial sample application of the approach to 
autonomous vehicles. It so far only shows how to 
identify single critical state transitions in rather 
moderately large state spaces. Besides full-scale 
implementation of the approach, also 
generalizations from the base-line formalism are 
a natural step ahead, in particular beyond time-
dependent transitions only and going beyond the 
classical Markov assumption.  
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