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This paper considers a deteriorating feedback control system suffering from stochastic internal damage, and
investigates a methodology for modeling its system-level degradation index with predicting its remaining useful
life. The design of the controller allows the system output to track the input and, at the same time, hides part of the
degradation and makes it difficult to be detected. To avoid the strong control impact, we equip an extra low-intensity
controller while preserving the closed-loop structure and stability of the system with the aim to reveal the effects of
inner damage on system performance. Then, at each inspection date, we apply only observable input and output from
newly controlled system to estimate transfer function and extract the peak value of its step response as a degradation
index which is thus less subject to control action. Thereafter, a stochastic diffusion process with nonlinear drift
and diffusion is used to model the evolution of this index. To calculate the probability density function of system
remaining useful life, Lamperti transform and Ricciardi transform are applied to convert this model to the standard
Brownian motion so that an approximation of its first hitting time with a time-varying failure threshold is used to
obtain the remaining useful life of our system. A case study from an inertial platform is given to proof the feasibility
of the aforementioned methods.

Keywords: Feedback control system, degradation modeling, stochastic diffusion process, RUL prognosis, Lamperti
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1. Introduction

Feedback control system (FCS) is a closed-loop

system driven by a controller aiming to ensure

expected dynamic performances. With time and

usage, its inner components suffer from stochastic

damages which accumulate and eventually cause

system failure, Aggab et al. (2022). Our goal is

to model the degradation process at the system-

level of a FCS followed by the prognosis of its

remaining useful life (RUL).

RUL is the residual lifetime of the degraded

FCS from its current deteriorating state until its

failure. Approaches for predicting the pRUL of

FCS generally falls into two categories, as illus-

trated in our previous work (Gong et al., 2022).

One is to model the component degradation of the

system by stochastic processes so that the prob-

ability density function (PDF) of the first hitting

time (FHT) are then calculated for RUL prognosis

via the selected model, where the FHT is the first

time when the degradation index exceeding the

failure threshold, Do and Söffker (2021). How-

ever, when the degradation of the components

is not synchronized with the degradation of the

1721



1722 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

whole system, this approach is no longer accu-

rate. To overcome this drawback, an alternative

approach is to apply a filter constructed from the

physical structure of the FCS. It estimates both

system states and the stochastically hidden dam-

ages, and then combines them with Monte Carlo

simulation to predict the system RUL, e.g., in

(Obando et al., 2021; Moulahi and Hmida, 2022).

Obviously, when the physical knowledge of the

FCS is unknown, the filter cannot be established.

In a nutshell, the system-level health index, which

is applied to monitor the degradation state of the

entire FCS, created neglecting system physical

structure, is a more suitable choice for monitoring

the degradation of the whole FCS. It can thereafter

be applied to obtain a prognostic system RUL. In

(Gong et al., 2022), we apply merely the input

and output information of the deteriorating FCS

to estimate their transfer functions, then extract

the pole position changes and maximum gains as

two system-level degradation indices. The strong

effects from the controller make the output of the

FCS track its input but at the same time offsets

part of the degradation and makes it difficult to be

inspected at the early degrading stage, but increase

dramatically when FCS approaches the failure.

Such trajectories are hard to successfully model

with stochastic processes so that we obtain the

RUL of the system by Monte Carlo simulation.

It is well known that calculating the RUL dis-

tribution based on stochastic degradation models

can save a significant amount of time and ex-

pense compared to only using Monte Carlo sim-

ulation. Therefore, our work is carried out on the

basis of establishing a system-level degradation

index using a similar approach of (Gong et al.,

2022) which are then modeled using stochastic

processes for the purpose of obtaining analytical

PDF of RUL by means of probability calcula-

tion. For reducing controller effects on the health

index, we set up an extra controller for obtain-

ing the degradation information from the FCS.

To further explain, the system works normally

with original controller except at each inspection

date we switch to a low-intensity controller for

deriving the system input and output. Their esti-

mated transfer function thus contains less control

affected degradation information. The peak value

extracted from its step response, can thus reveal

more precisely the system deterioration caused

by stochastic hidden damage and is regarded as

a degradation index which increases as the sys-

tem degrades. Thereafter, a stochastic diffusion

process (SDP), whose drift and diffusion are the

combination of two polynomials with respect to

time and degradation state respectively, is applied

to model the degradation evolution of the afore-

mentioned peak value while the maximum likeli-

hood estimation (MLE) from (Särkkä and Solin,

2019) is employed to estimate all the parameters.

To derive the PDF of its FHT, we attempt to con-

vert the above SDP into standard Brownian mo-

tion (SBM) via the Ricciardi transform approach

proposed in (Ricciardi, 1976) in order to easily

apply the method developed in (Durbin, 1985),

which aims to approximate the PDF of the FHT

about a Markovian process given a time-varying

failure threshold. However, considering the drift

and diffusion of our SDP is too complex to ap-

ply Ricciardi transform directly, we first apply

the Lamperti transform (Egorov et al., 2003) to

convert the previously given SDP into an SDP

with unit diffusion and drift depending on both

time and degradation state. Then, we replace the

state item of the above drift by a fixed degradation

level which is the current degradation state at each

inspection time interval. The approximated drift is

thus only time-related making its corresponding

SDP easy to transform into a SBM by Ricciardi

transform. The RUL prognosis of the degraded

FCS can be thus approximated by analytical PDF

obtained above.

In summary, this paper attempts to obtain ana-

lytical PDF for predicting the RUL of FCS by ap-

plying SDP modeling on peak value, the system-

level degradation index. The highlights of this

paper are: Firstly, at each inspection date, we

switch to the low-intensity controller to observe

system input and output used to obtain the peaks.

This aims to avoid the controller trying to offset

excessive FCS degradation in order to achieve

its control objectives, thus making it difficult to

model the degradation index with little inner dam-

age revealed in the early stage of degradation.
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Secondly, in order to estimate the PDF of the

RUL, an available method is to transform the

modeled SDP into an SBM with time-varying

failure threshold and approximate the PDF of its

FHT via the method in (Durbin, 1985). However,

for the SDP where both drift and diffusion are a

combination of two polynomials related by time

and degradation state, a direct application of the

Ricciardi transform is not feasible. Therefore, we

apply the Lamperti transform to convert the SDP

to the one with unit diffusion, where the state of

its drift is then approximated by a fixed degrada-

tion state at each inspection time interval. Thus,

the only time-dependent drift and unit diffusion

allow further conversion to SBM by the Ricciardi

transform.

The rest of this paper is as follows. Section 2

introduces the deteriorating FCS and builds peak

value as its degradation index. Section 3 models

the evolution of peak using SDP and obtains the

prognosis for the system RUL after a series of

transformations and FHT approximation. Numer-

ical validations of the above method are supplied

in Section 4 through a case study. Section 5 gives

the conclusion and perspectives.

2. Degradation Index Construction

To elaborate on our research issues, a deteriorating

single-input single-output degradation-dependent

FCS is given as{
ẋ (t)=A(D(t,x(t)))x(t)+B(D(t,x(t)))u(t),

yo(t)=C(D(t,x(t)))x(t),

(1)

where x (t) and yo(t) are system state and

output respectively. A(D(t,x(t))) ∈ R
n×n,

B(D(t,x(t))) ∈ R
n×1 and C(D(t,x(t))) ∈

R
1×n are system matrices with unknown physi-

cal knowledge and dependent on stochastic inner

damage D(t,x(t)) defined as

D(t,x(t)) = D(0,x(0)) +

∫ t

0

μ(r,x(r))dr

+

∫ t

0

σ(r,x(r))dB(r).

(2)

D(0,x(0)) = 0 represents that the system (1)

is healthy initially, μ(r,x(r)) and σ(r,x(r)) are
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Fig. 1.: Inspection scheme.

both time- and degradation state-related items.

{B(t)}t�0 stands for a SBM i.e. B(t) ∼ N (0, t).

u(t) is the control signal designed to narrow the

gap between the system output yo(t) and input

yi(t). Then, we attempt to reveal the system-level

degradation evolution of (1) caused by hidden

stochastic damage {D(t,x(t))}t�0. Our research

problem is started from building a system-level

degradation index of (1) for the monitoring of its

degrading process. As explained in (Gong et al.,

2022), the system matrices are unknown so that

they propose to estimate the transfer function at

each inspection date of the original FCS (1) via

a couple of observable input and output, then ex-

tracts alternative system-level indices that contain

the information of D(t,x(t)). However, directly

observing the transfer function of original FCS

cannot reveal more about the degradation occur-

ring in the system plant, as the original well-

designed controller offsets part of the inner dam-

age on system for the reason of achieving the

control goal. The degradation indices thus ob-

tained fail to show significant system degradation

in the early stage of degradation but increase dra-

matically in the later stage as the controller fail

to meet the control requirements. This makes it

difficult to be modeled by suitable and simple

stochastic processes. To bypass it, we set up a

new low-intensity controller (as it shows in Fig. 1)

at each inspection date while preserving this FCS

stability, with the aim of observing yo(t) and yi(t)

that revealing more the effects of inner damage

on system performance, to estimate its transfer

function H(s) via the method in (Ljung, 1998).

Out of inspection, the FCS operates with original

controller. The peak value P (t) of the system

step response observed via H(s) is thus selected
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Fig. 2.: P (t) from the step response of the transfer

function H(s).

as a degradation index to monitor the degrading

evolution of (1) (See Fig. 2). As it shows in

Fig. 3, P (t) is increasing with the accumulation

of hidden damage. We define P (t) a fixed failure

threshold Lf over which the FCS is failed, and the

FHT Tf is denoted as

Tf = inf{t ≥ 0, P (t) ≥ Lf}. (3)

Degradation modeling and RUL prognosis are

then developed via the degradation data inspected

from P (t).

3. Degradation Modeling & RUL
Estimation

In this section, we model P (t) by an SDP in

Section 3.1, and then transform it to SBM via the

methods given in Section 3.2 so as to approximate

its FHT using the PDF.

3.1. Degradation modeling

Since the hidden damage (2) has both positive and

negative increments, we propose an SDP

dX(t) = μ(t,X(t))dt+ σ(t,X(t))dB(t) (4)

to model P (t), where μ(t,X(t)) = atmtm +

· · · + at1t + aXm
Xm + · · · + aX1

X + ac and

σ(t,X(t)) = btmtm+· · ·+bt1t+bXmXm+· · ·+
bX1

X + bc. {atm , · · · , at1 , aXm
, · · · , aX1

, ac}
and {btm , · · · , bt1 , bXm , · · · , bX1 , bc} are the pa-

rameters. m,n ∈ R are the orders. According

to the Euler–Maruyama equation, the solution of

Eq. (4) can be approximated by

X̂(tc+1) = X̂(tc) + μ(X̂(tc), tc; θ)Δt

+ σ(X̂(tc), tc, θ)ΔB(tc),
(5)

where θ represents the unknown parameters vec-

tor and ΔB(tc) ∼ N(0,Δt). Assuming {tc, c =

1, 2, · · · , T} as the equally-spaced inspection mo-

ments, We thus apply the MLE method given in

(Särkkä and Solin, 2019) with the log-likelihood

function l(θ) formulated as

l(θ) =

T−1∑
c=0

[1
2
log |2πσ(tc, X(tc); θ)σ

T (tc, X(tc); θ)Δt|

+
1

2
(X(tc+1)−X(tc)− μ(tc, X(tc); θ)Δt)T

× [σ(tc, X(tc); θ)σ
T (tc, X(tc); θ)]

−1

× (X(tc+1)−X(tc)− μ(tc, X(tc); θ)Δt)
]

(6)

to estimate all parameters. The mean and variance

of the degradation paths P (t) and its increment

ΔP � P (tc)− P (tc−1) are close to X(t) and

ΔX � X(tc)−X(tc−1) under the estimated

parameters, respectively. (·)T is the transpose.

3.2. RUL estimation process

Once we have modeled P (t) with the stochastic

process X(t), given the failure threshold Lf , the

PDF of the RUL Rf , which is defined as

Rf = inf{r > 0;P (tc + r) ≥ Lf |P (tc) = Pc}
(7)

at the current inspection date tc and degradation

level Pc, should be obtained through probability

calculation. Since it is difficult to directly cal-

culate the RUL of an SDP, we propose to first

transform the general SDP into SBM and then

apply the estimated PDF of FHT for SBM under

time-varying failure thresholds in order to obtain

the distribution of FHT and RUL with respect to

SDP.

3.2.1. Lamperti transform

A Lamperti transform

Y (t) := ϕ(t,X(t)) :=

∫ x

ξ

1

σ(t, u)
du

∣∣∣∣
x=X(t)

(8)
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exists to transform the general SDP (4) into

dY (t) = μY (t, Y (t))dt+ dB(t) (9)

with unit diffusion via a one-to-one map-

ping, where ξ is any value. The drift function

μY (t, Y (t)) is obtained by Itô formula as

μY (t, Y (t)) =
∂ϕ(t, ϕ−1(t, Y (t)))

∂t

+
μ(t, ϕ−1(t, Y (t)))

σ(t, ϕ−1(t, Y (t)))
− 1

2

∂σ(t, ϕ−1(t, Y (t)))

∂X(t)
.

(10)

The failure threshold Lf is thereafter transformed

as a only time-varying

LfL(t) =

∫ x

ξ

1

σ(t, u)
du

∣∣∣∣
x=Lf

. (11)

3.2.2. Ricciardi transform

The SBM transform (Ricciardi, 1976)

X̃(t̃) � ψ(t, y) = e−
1
2

∫ t
0
c2(τ)dτy

− 1

2

∫ t

0

c1(τ)e
− 1

2

∫ τ
0

c2(r)drdτ

t̃ � φ(t) =

∫ t

0

e−
∫ τ
0

c2(r)drdτ,

(12)

is then given to transform (9) into a SBM X̃(t̃),

where c1(t) and c2(t) are only time-related func-

tions satisfying

μY (t, Y (t)) =
1

2

(
c1(t) +

∫ y

z

c2(t)dy

)
(13)

with z ∈ I . Accordingly, the failure threshold

LfL(t) is transformed into

LfR(t) = ψ(t, LfL(t)). (14)

Obviously, μY (t, Y (t)) is a complex t− and

Y (t)− related formula. Thus, there may not be

c1(t) and c2(t) satisfying Eq. (13). To bypass it,

at each inspection date tc, we substitute the time-

varying Y (t) of μY (t, Y (t)) by its current value

Yc := Y (tc) =
∫ x

ξ
1

σ(t,u)du

∣∣∣∣
x=Xc:=X(tc)

so that

∀t ∈ [tc, tc+1), we derive the approximation of

(9) as

dYt(t) = μYt(t, Yc)dt+ dB(t). (15)

Thus, c1(t) and c2(t) can be selected as

c1(t) = 2μY (t, Yc)

c2(t) = 0
(16)

3.2.3. FHT approximation

After the above transforms, we thus apply the

method in (Durbin, 1985) on the transformed

SBM (12) to approximate the PDF of FHT under

time-varying failure threshold LfR(t) by formula

fTf
(t) =

1√
(2πt̃)

(
LfR(t)

t̃
− ∂X̃(t̃)

∂t̃

)
e−

L2
fR

(t)

2t̃

=
1√
(2πt)

(
LfR(t)

t
− ∂X̃(t)

∂t

)
e−

L2
fR

(t)

2t .

(17)

Given current inspection date tc and RUL l, the

PDF of RUL is obtained as

fTf
(l|tc) = 1√

(2πl)
·

(
LfR(tc + l)− X̃(tc)

l
− ∂X̃(t)

∂t

∣∣∣∣
t=tc+l

)
·

e−
(LfR

(tc+l)−X̃(tc))
2

2l ,
(18)

which can thus be used to predict system RUL at

each inspection date.

4. Numerical Experiments

To validate the developed RUL prognosis method

in Eq. (18), we consider a deteriorating FCS which

is a inertial platform thoroughly introduced in

(Gong et al., 2022) whose structures is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lmx
′
1(t) +Rmx1 (t) +Kex2 (t) = u(t),

Jx
′
2 (t) = Km (t)x1 (t) + ω (t) ,

x′
3 (t) = x2 (t) ,

yo (t) = x3 (t) + ν (t) ,

(19)

where xk(t), with k = 1, 2, 3, denotes the

system state, and x
′
k(t) is its time derivative;

Lm, Rm, Ke and J are constant parameters;

ω(t) ∼ N (0, σω) and ν(t) ∼ N (0, σν) are zero-

mean Gaussian noises. A proportional-integral-

derivative controller in bound −80 ≤ u(t) ≤ 80
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Fig. 3.: Km(t) and P (t) in [0, 60].

is configured and formulated as

u(t) = Kp

(
e(t) +

1

Ti

∫ t

0

e(r)dr + Td
de(t)

dt

)
,

(20)

where e(t) = yi(t) − yo(t) is the control error

and yi(t) = (π/10) sin (0.4t) is a sinusoidal ref-

erence input. Kp, Ti and Td are respectively the

proportional, integral and derivative coefficients

designed to achieve control objective. A Wiener

hidden damage D(t,x(t)) ∼ WP
(
λx2

1 (r) , σ
)

is

assumed to exist within the system and defined as

Km(t) = d0 + λ

∫ t

0

x2
1 (r) dr + σB (t) . (21)

All the parameters are given by Table 1 of (Gong

et al., 2022).

4.1. Degradation process modeling

In order to clearly understand the relationship be-

tween inner damage Km(t) and degradation index

P (t). We simulate Km(t) in the time interval

[0, 60] and obtain the corresponding P (t) from

1000 similar systems within the same inspection

date via the method mentioned in Section 3 and in

(Ljung, 1998). Some of the degradation paths of

Km(t) and P (t) are shown in Fig. 3. According

to the above degradation data of P (t), we select

alternative expressions of drift and diffusion as

μ(t,X) = at2t
2 + at1t+ aX2

X2 + aX1
X + ac,

σ(t,X) = bt2t
2 + bt1t+ bX2X

2 + bX1X + bc.
(22)

of the SDP model (4) to model P (t) � P (t) −
P (0), i.e. zeroing out the initial value. Apply-
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(a) The fitting of P (t).
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(b) The fitting of ΔP (t).

Fig. 4.: Model P (t) by X(t), t ∈ [0, 60].

ing MLE, {at2 , at1 , ax2 , ax1 , ac} = {−5.10e −
08, 2.95e − 06, 0.0806, 0.0034, 0.0011},

{bt2 , bt1 , bx2 , bx1 , bc} = {9.33e − 08,−7.95e −
06,−1.31e − 08, 0.0122, 0.0012} are estimated.

The fitting results are given in Fig. 4 which are
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60

80

100
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40
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Fig. 5.: Quantile-Quantile plots between P (t) and

X(t) under Lf = Pc +0.02 at different groups of

inspection dates.
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assessed by the coincidence of mean and variance

of P (t), X(t) and of ΔP (t), ΔX(t). For further

assessing the fitting goodness, we compare the

RUL of P (t) and X(t) at four different groups

of inspection dates tc = [40, 40, 60, 80] with

corresponding Pc = [0.03, 0.07, 0.03, 0.07] given

failure threshold Lf = Pc + 0.02. The Quantile-

Quantile plots are thus given in Fig. 5 to proof the

feasibility of the selected model.

4.2. RUL comparison

Fig. 8 shows the transforms on the modeled degra-

dation paths and the corresponding changes on the

mean and variance of their increments. A general

X(t) in Fig. 8(a) with Lf = 0.02 is transformed

into a unit diffusion SDP Y (t) with corresponding

LfL(t) in Fig. 8(b) by Lamperti transform; Y (t)

is further transformed to a SBM X̃(t) with corre-

sponding LfR(t) in Fig. 8(c). As we explained in

Section 3.2.2, for applying SBM transform (12),

Eq. (13) must be satisfied. Thus we apply (15) to

approximate (9) and then apply the SBM trans-

form on it to obtain Fig. 8(c). To validate the ap-

proximation accuracy, Fig. 6 is given to compare

the μY (t, Yc) with the μY (t, Y (t)) at different in-

spection states. From this figure, we could find the

approximated μY (t, Yc) is functional except the

initial degradation state {tc = 0, Xc = 0} which

is not a matter since the inspection dates are usu-

ally not the initial date. Thus, we apply the PDF

of RUL given in (18) based on the transformed

X̃(t), the comparison between the analytical PDF

0 10 20 30 40 50 60
0

1

2

40 50 60 70 80
0

1

2

80 85 90 95 100

0

0.5

1

Fig. 6.: Approximate μY (t, Y (t)) by μY (t, Yc) at

different {tc, Xc}3.

0 10 20 30 40
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(a) RUL at tc = 0, Pc = 0.
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0
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0.1

0.15

(b) RUL at tc = 40, Pc =
0.3.
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(c) RUL at tc = 40, Pc =
0.7.

0 5 10 15
0

0.05

0.1

0.15

(d) RUL at tc = 80, Pc =
0.7.

Fig. 7.: RUL comparison at different inspection

dates {tc, Pc}4.

by Eq. (18) with the RUL from the original P (t),

modeled X(t), transformed Y (t), approximated

Yt(t), transformed X̃(t) are given in Fig. 7 where

the initial failure threshold of P (t) is chosen as

Lf = Pc + 0.02. In this figure, we could see the

RUL from X(t) and Y (t) are the same while the

RUL from Yt(t) and X̃(t) are also the same. This

is due to the one-to-one relationship of Lamperti

and Ricciardi transform. Moreover, we could find

the red curve from fTf
(l|tc) is far from the yellow

curve P (t) in the case when tc = 80;Pc = 0. This

is coming from the degradation modeling error

since we only apply the degradation data in [0, 60].

5. Conclusion and Perspective

In this paper, we study the RUL prediction of de-

teriorating FCS via SDP where the system suffers

from stochastic hidden damage. To bypass strong

control effects, a low-intensity controller is set up

in the FCS for generating only observable input

an output at each inspection date to estimate the

transfer function between them. Thus, we extract

peak value from its step response as a degradation

index which can reveal more the inner damage

and model it by an SDP. To study the PDF of

the system RUL, an SDP is used to model the
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(a) X(t) in [0, 60]. (b) Y (t) in [0, 60]. (c) X̃(t) in [0, 60].
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Fig. 8.: SDP transforms to SBM first by Lamperti transform, then by SBM transform.

degradation index. This SDP is then transformed

into SBM by two transformations to allow an

easy application of the FHT approximation under

time-varying failure threshold. Then, a PDF of

the RUL is obtained, which can be applied to the

controller reconfiguration decision to extend the

system RUL.
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