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One of the advanced Monte Carlo techniques employed to perform Bayesian model updating on the epistemic
model parameter(s) is the Transitional Markov Chain Monte Carlo sampler. A key characteristic in its sampling
approach involves the use of “transitional” distributions to allow samples to converge iteratively from the prior to
the final posterior. Hence, the selection of the transition step size becomes of critical importance. Currently, the
selection criterion is such that the optimal transition step size is one that realizes a 100 % Coefficient of Variation
in the statistical weights of the samples in a given iteration. The work presented here considers an alternative
selection criterion on the transition step size involving the use of the Effective Sample Size as a metric. The optimal
step size considered in this work is one which achieves an effective sample size equal to half the total sample
size. To provide a comparative study, the standard Transitional Markov Chain Monte Carlo sampler, along with
the modified Transitional Markov Chain Monte Carlo sampler imbued with the alternative selection criterion, are
implemented to infer the friction force and the natural frequency of a single-storey frame structure with a metal-
to-metal contact, whose dynamics is described by a non-linear differential equation. From there, the sampling
performance is compared on the basis of the evolution of the tempering parameter, and the standard error of the
estimates.
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Non-linear dynamics, Coulomb friction.

1. Introduction

In many engineering applications, examples to

which include risk analysis, reliability assess-

ments, and structural health monitoring, an im-

portant aspect is the capability to infer model

parameters under epistemic uncertainty (Lye et al.

(2019, 2020)). Such uncertainties may arise from

measurement “noise” when collecting data, model

uncertainty, and the variability of the input model

parameter due to manufacturing and material vari-

ability between the nominal identical engineering

structures.

An approach to propagate and quantify the epis-

temic uncertainties on the inferred model param-

eter(s) is Bayesian model updating (Lye et al.

(2019)) which will be the main focus of the work

presented in the paper. One key strength to this

approach is its capability to update prior knowl-

edge while observations are made making such

technique popular. To perform Bayesian model

updating, advanced Monte Carlo methods are re-

quired to sample from the posterior of interest

and perform numerical estimates on the inferred

model parameter(s). One such method would be

the Transitional Markov Chain Monte Carlo (TM-

CMC) sampler proposed by Ching and Chen

(2007) to which details are provided in Section

2.1.

The research objectives of the paper are: 1) to

consider an alternative transition criterion for the

TMCMC which yields a new variant of the sam-

pler referred to as the TMCMC-II sampler; and

2) to provide a comparison between the TMCMC

and the TMCMC-II samplers in inferring the fric-

tion force and natural frequency of a single-storey

frame structure with a brass-to-steel contact. Such
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comparison will be done on the basis of the vari-

ability of the distribution of the posterior samples

across independent sampling runs, and the number

of sampling iterations elapsed.

2. Bayesian Model Updating

The Bayesian model updating technique is based

upon the Bayes Theorem defined as (Beck and

Katafygiotis (1998)):

P (θ|D,M) =
P (θ|M) · P (D|θ,M)

P (D|M)
(1)

where P (θ|M) is the prior distribution reflecting

the prior knowledge on the inferred parameter(s) θ

before collecting data D, P (D|θ,M) is the like-

lihood function reflecting the degree of agreement

between the observed data D and the prediction

from model M given θ, and P (D|M) is the ev-

idence which ensures that the posterior integrates

to one.

However, due to P (D|M) being a numerical

constant, it is often neglected and P (θ|D,M) can

be expressed in its un-normalised form following:

P (θ|D,M) ∝ P (θ|M) · P (D|θ,M) (2)

To sample from the un-normalised P (θ|D,M),

direct Monte Carlo sampling cannot be imple-

mented. Instead, an advanced Monte Carlo ap-

proach such as the TMCMC sampler can be

adopted.

2.1. Transitional Markov Chain Monte
Carlo Sampler

The TMCMC sampler generates samples from

P (θ|D,M) through a series of intermediate dis-

tributions known as “transitional” distributions P j

defined as (Ching and Chen (2007)):

P j ∝ P (θ|M) · P (D|θ,M)βj (3)

where j = 0, 1, . . . ,m is the iteration number, and

βj is the tempering parameter such that β0 = 0 <

β1 < · · · < βm = 1.

The sampling procedure undertaken by the

TMCMC sampler to generate N samples from

P (θ|D,M) are as follows: At iteration j = 0,

N samples are obtained via direct sampling from

the prior P (θ|M). Set these samples as θj+1
i , for

i = 1, . . . , N . At iteration j = 1, the algorithm

proceeds to compute the normalised weights ŵj
i

following:

ŵj
i =

P (D|θi,M)Δβj∑N
i=1 P (D|θi,M)Δβj

(4)

where Δβj = βj+1 − βj is the transition step

size. Following which, the algorithm proceeds

to the Markov chain Monte Carlo step. In this

step, N distinct Markov chains are generated,

each initiating from θj
i . With probability ŵj

i , the

sample of the ith Markov chain is updated via

the Metropolis-Hastings approach using a Normal

proposal distribution with covariance matrix Σj

computed as:

Σj = γ2 ·
N∑
i=1

ŵj
i · {θj

i − θ
j}× {θj

i − θ
j}T (5)

where γ is the scaling parameter set at 0.2 (Ching

and Chen (2007)), and θ
j
= 1

N

∑N
i=1 θ

j
i is the

sample mean. This method of updating the sam-

ples is repeated N times which implies that the

Markov chain with higher ŵj
i would have longer

chains assembled. The resulting set of updated

samples are then set as θj+1
i and the algorithm

proceeds to iteration j = j + 1. This process is

repeated until the last iteration j = m.

An important aspect of the TMCMC sampler

is the selection of an optimal Δβj . Such value

of Δβj should neither be too small such that the

sampling procedure requires a relatively larger

number of iterations, nor too large such that the

transition between P j and P j+1 no longer be-

comes gradual. As proposed by Ching and Chen

(2007), the optimal value of Δβj at any given j is

one that ensures that the Coefficient of Variation

of P (D|θ,M)Δβj is 100 %. This can be done

numerically by solving the following optimisation

problem (Ching and Chen (2007)):

βj+1 = argminβj+1

{∣∣∣∣∣σ(P (D|θj
i ,M)Δβj )

μ(P (D|θj
i ,M)Δβj )

− 1

∣∣∣∣∣
}

(6)

where σ(•) and μ(•) are the standard deviation

and mean operators respectively.
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2.2. Proposed Transition Criterion

The paper presents an alternative transition crite-

rion involving the use of a metric known as the

Effective Sample Size Neff which serves as an

indicator of sample degeneracy. The metric Neff

is computed at every iteration j following (Liu and

Chen (1998)):

Neff =
1∑N

i=1

(
ŵj

i

)2 (7)

where ŵj
i is computed via Eq. (4). As a refer-

ence, Liu and Chen (1998) proposed a threshold

value of Neff = N
2 below which, it indicates

the presence of sample degeneracy. Such approach

of highlighting sample degeneracy and providing

a criterion for resampling has been implemented

within the Sequential Monte Carlo samplers by

Moral et al. (2006). With reference to Eq. (4), the

formula for Neff can be re-expressed as:

Neff (Δβj) =

(∑N
i=1 P (D|θj

i ,M)Δβj

)2

∑N
i=1

(
P (D|θj

i ,M)Δβj

)2 (8)

From there, the following optimisation problem is

presented and solved numerically:

βj+1 = argminβj+1

{∣∣∣∣Neff (Δβj)− N

2

∣∣∣∣
}

(9)

For the purpose of distinction from the original

TMCMC sampler, the resulting sampler adopting

this transition criterion will be referred to as the

TMCMC-II sampler. To provide a comparison be-

tween the sampling performances of the TMCMC

and the TMCMC-II samplers, the samplers will

be implemented to infer key parameters of a non-

linear dynamical engineering structure to which

details are presented in Section 3.

3. Benchmark Application Problem

The benchmark application problem involves the

inference of natural frequency and friction force

in a base-excited single-storey frame with a brass-

to-steel contact from its measured bottom-plate

and top-plate displacements. This experimental

setup has already been extensively investigated in

Marino and Cicirello (2020); Lye et al. (2023),

Fig. 1. Schematic diagram of the single-storey frame
experimental setup. Image adopted from Lye et al.
(2023).

where a detailed description of test rig and pro-

cedure is available. A schematic diagram of the

structure is provided in Figure 1.

3.1. Physics-based Model

As demonstrated by Marino and Cicirello (2020),

the single-storey frame can be modelled as a

Single-Degree-of-Freedom (SDoF) mass-spring

system with a friction contact between the mass

and an external wall, and Coulomb’s law can be

used as a friction model. The physics-based model

of this structure is therefore governed by the fol-

lowing non-linear differential equation:

r2 · d2x̃

dτb2
+ x̃+ ϕ · sgn

(
dx̃

dτb

)
= cos (τb) (10)

where x̃ is the dimensionless displacement of the

top plate, r is the dimensionless frequency ratio,

ϕ is the dimensionless friction force, τb is the

dimensionless time parameter, and sgn(•) is the

sign function. The dimensionless parameters are

mathematically defined as follows:

x̃ =
x

Yb
(11)

r =
ωb

ωn
(12)

ϕ =
Fμ

k · Yb
(13)

τb = ωb · t (14)
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where Yb is the amplitude of the base excitation, k

is the stiffness of the SDoF model, k · Yb = 2.50

N is the driving force, ωb is the driving frequency,

ωn = 3.086 Hz is the natural frequency of the

system, and Fμ = 1.086N is the amplitude of the

Coulomb friction force generated in the contact.

Under the assumption of steady-state continu-

ous motion, the analytical solution to Eq.(10) can

be written in the half-period [0, π) included be-

tween a maximum and the subsequent minimum

of x̃(τb) as (Den-Hartog (1930)):

x̃(τb) = x̃0 · cos(τb) + ϕ · U · sin(τb)+

ϕ ·
[
1− cos

(
τb
r

)
− U · r · sin

(
τb
r

)]
(15)

and as −x̃(τb − π) in the subsequent half-period

[π, 2π). In the above equation, U is the damping

function defined as:

U =
sin (π/r)

r · [1 + cos (π/r)]
(16)

while x̃0 is the dimensionless response amplitude

defined as:

x̃0 =

√(
1

1− r2

)2

− (ϕ · U)2 (17)

Detailed explanation behind their derivations can

be found in Marino et al. (2019).

3.2. Generating the Numerical Data

The numerical data of interest, for a fixed value

of the friction force Fμ, are the frequency ratio r

and the corresponding phase angle φ. The model

relating Fμ and r to φ is denoted as Mφ and its

implementation is done in the following steps:

(1) The model computes ϕ using Eq. (13);

(2) The algorithm computes the boundary between

continuous and stick-slip regimes following

(Den-Hartog (1930)):

ϕlim =

√
1(

U2 + 1
r4

) · (1− r2)2
(18)

(3) If ϕ > ϕlim, the assumption of continuous

motion is not satisfied and, since the current

analysis is limited to continuous responses,

the model assigns a NaN (i.e. Not a Number)

value for φ before terminating the procedure.

Otherwise, the algorithm proceeds to the next

step;

(4) The algorithm computes x̃(τb) from Eq. (15)

and the numerical forcing function ỹ(τb):

ỹ(τb) = cos(τb + η) (19)

in the time interval [0, 2π), being:

η = atan2
[−ϕ · U · (1− r2), x̃0 · (1− r2)

]
(20)

(5) The dimensionless frequency spec-

tra x̃FFT (f̃) and ỹFFT (f̃) are obtained using

the Fast-Fourier Transformation on x̃(τb) and

ỹ(τb) respectively;

(6) Setting f̃ = 1 (i.e., the dimensionless driving

frequency), the resulting φ is computed follow-

ing (Marino and Cicirello (2020)):

φ = arg{x̃FFT (f̃ = 1)}−arg{ỹFFT (f̃ = 1)}
(21)

A summary to the above procedure is provided

as a pseudo-algorithm as shown in Algorithm 1.

In the event Mφ = NaN, the likelihood function

P (Ds|θ,Mφ,Mr) returns a 0.

In total, 10 different sets of data D =

{rnom, r, ωb, φ} are obtained numerically. To sim-

ulate measurement “noise”, the numerical data for

r and φ are obtained following:

r = rnom + εr; where εr ∼ N(0, σr) (22)

where σr = 0.01, and rnom is the nominal fre-

quency ratio used for data collection, from which

ωb is computed from r using Eq. (12), and

φ = Mφ + εφ; where εφ ∼ N(0, σφ) (23)

where σφ = 2o. The resulting data values for D

are presented in Table 1 and are illustrated as a

graphical plot in Figure 2.

3.3. Bayesian Model Updating Set-up

The Bayesian model updating procedure is imple-

mented to infer θ = {Fμ, ωn}. It needs to be

noted that the inferred parameters defined by θ are

assumed to be time-invariant.

Assuming independence between the distinct

sets of data and the inferred parameters, the likeli-
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Algorithm 1 Pseudo-algorithm of model Mφ

1: procedure (Compute φ from Fμ and r)

2: Compute ϕ with Fμ using Eq. (13)

3: Compute ϕlim with r using Eq. (18)

4: if ϕ > ϕlim then � Continuous motion condition not satisfied

5: Set φ = NaN

6: else
7: Compute x̃(τb) using Eq. (15)

8: Compute ỹ(τb) using Eq. (19)

9: Execute FFT on x̃(τb) to yield x̃FFT (f̃)

10: Execute FFT on ỹ(τb) to yield ỹFFT (f̃)

11: Set f̃ = 1

12: Compute φ using Eq. (21)

13: end if
14: end procedure
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Fig. 2. Plot of the data of phase angle φ [deg] against the dimensionless frequency ratio r.

hood function is defined as:

P (D|θ,M) =

10∏
q=1

1

2π · σr · σφ
×

exp

[
− (rqnom −Mr(ω

q
b , ωn))

2

2 · σr
2

−
]
×

exp

[
(φq −Mφ(r

q, Fμ))
2

2 · σφ
2

]
(24)

where Mr is the model used to predict r as defined

by Eq. (12), and M = {Mφ,Mr}. Here, σr and

σφ are set as uncertain parameters.

For the inferred parameters, each of them are

assigned a Uniform prior with bounds defined in

Table 2. A Uniform prior is chosen to simulate the

lack of prior knowledge on the true value of the

epistemic parameters and that only the bounds are

known.

For both the TMCMC and the TMCMC-II sam-

plers, a total of N = 1000 samples are ob-

tained from the resulting posterior P (θ|D,M).
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Table 1. The numerical data generated for D.

S/N rnom r ωb φ
(Hz) (deg)

1 0.643 0.644 1.987 27.466
2 0.786 0.793 2.447 29.968
3 0.929 0.954 2.945 27.739
4 1.071 1.065 3.286 149.366
5 1.214 1.216 3.753 148.301
6 1.357 1.356 4.186 153.816
7 1.500 1.481 4.569 151.774
8 1.643 1.639 5.056 144.536
9 1.786 1.768 5.455 149.090
10 1.929 1.937 5.978 149.947

Table 2. Uniform prior bounds for the

respective inferred parameters.

Parameter Bounds Units

Fμ [0.01, 10] N
ωn [0.01, 10] Hz
σφ [0.001, 10] deg
σr [0.001, 1] −

To account for the variability in the posterior sam-

ples generated and their distributions due to the

stochastic nature of the sampling procedure by

the samplers, the sampling procedure is repeated

50 times. From which, the performance of the

respective samplers are compared on the basis of:

1) variability of the resulting distribution of the

posterior samples; and 2) the statistics on the total

number of iterations required for the sampling

procedure.

4. Results and Discussions

From the resulting 50 sampling runs, a P-box is

constructed from the Empirical CDF (ECDF) of

the posterior samples (Ferson et al. (2003)). The

P-boxes are presented graphically for Fμ and ωn

as shown in Figure 3. As seen in the Figure, the

P-boxes for Fμ and ωn obtained by the respective

samplers both encompass the corresponding true

values of the inferred parameters. However, it is

noteworthy that the area of the P-box obtained for

both inferred parameters are significantly larger

for the case of the TMCMC-II sampler compared

to that obtained by the TMCMC sampler. To sup-

port such observation, the area metric A is com-

puted for the respective P-boxes following (De-

Angelis and Gray (2021)):

A =

∫ ∞

−∞
|FL(x)− FU (x)| · dx (25)

where FL(•) is the lower bound ECDF of the P-

box, and FU (•) is the upper bound ECDF of the

P-box. The numerical results of A are presented in

Table 3 for the corresponding P-boxes by the re-

spective samplers, and such result is supplemented

by a bar chart illustrated in Figure 4.

Table 3. Numerical results of the area metric for the

corresponding P-boxes obtained by the respective sam-

plers.

Sampler Area of P-box
Fμ ωn

(N) (Hz)

TMCMC 8.151× 10−2 8.878× 10−3

TMCMC-II 1.714× 10−1 8.915× 10−3

It is noteworthy from Table 3 and Figure 4

that the area of the P-box for Fμ obtained by

the TMCMC-II sampler is nearly twice as large

compared to that obtained by the TMCMC sam-

pler. This indicates a larger degree of variability

in the posterior samples of Fμ obtained by the

TMCMC-II sampler. Such observation highlights

a poor convergence rate of the samples to the true

posterior distribution, indicating a relatively poor

mixing performance by the sampler.

The resulting statistics of the total number of

sampling iterations elapsed by the TMCMC and

the TMCMC-II samplers across the 50 sampling

runs are presented numerically in Table 4 and

graphically in Figure 4. Based on the statistics,

while most the sampling runs by both the TM-

CMC and the TMCMC-II samplers require 11

iterations, it is noteworthy that the maximum

number of sampling iterations required by the

TMCMC-II sampler to sample from the poste-

rior distribution is 11 whilst that of the TMCMC

sampler is 10. In fact, 9 of such sampling runs
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Fig. 3. Resulting P-boxes of the estimates for the friction force Fμ and natural frequency ωn obtained by the
TMCMC and the TMCMC-II samplers.
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Fig. 4. Bar charts illustrating the statistics for the area of the P-box obtained for the respective inferred parameters
(left), and the statistics of the total number of sampling iterations elapsed (right) by the TMCMC and the TMCMC-II
samplers.

by the TMCMC-II require 11 sampling iterations

in sampling from the posterior distribution which

constitutes 18 % of the total number of sampling

runs. This provides additional evidence of the rel-

atively poor mixing performance by the TMCMC-

II sampler compared to the TMCMC sampler.

5. Conclusion

The paper has presented an alternative transition

criterion for the Transitional Markov Chain Monte

Carlo sampler. It involves the use of the Effective

Sample Size as a metric to determine the transition

step size such that the transition occurs upon the
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Table 4. Numerical statistics of the total number of

sampling iterations elapsed by the respective sam-

plers.

No. of Iterations Sampler
TMCMC TMCMC-II

9 6 5
10 44 36
11 0 9

Effective Sample Size reaching half of the total

sample size.

To study the effectiveness of such transition

criterion, the modified variant of the sampler is

implemented alongside the traditional variant to

infer key parameters of an experimental test rig

modelled as a Single-Degree-of-Freedom system

subjected to Coulomb friction. The comparison

between the samplers are done on the basis of the

variability of the posterior sample distribution and

the number of sampling iterations required.

Results showed a greater degree of variability

in the distribution of the posterior samples as

well as significant sampling runs requiring a rela-

tively higher number of sampling iterations by the

modified Transitional Markov Chain Monte Carlo

sampler compared to the traditional variant. This

indicates a relatively poor mixing performance by

the former. Further investigations are required to

provide non-empirical reasoning(s) behind such

observation.

To allow for a better understanding of the

study presented, MATLAB codes to the sampling

algorithms, model, and the benchmark applica-

tion problem are made accessible on GitHub via:

https://github.com/Adolphus8/
Bayesian-Model-Updating-Tutorials.
git. Experimental data are also avail-

able on GitHub via: https://github.com/
l-marino/singlestorey-friction.
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