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The increasing complexity of product functionality and manufacturing processes often leads to complex failure 
modes and reliability problems within the product usage phase. This paper outlines an approach to determine and 
identify risky parts in product fleets based on cluster analysis with respect to product failure behavior and usage 
load profile. The theory and application of the approach are shown with the help of a data base of a light electric 
vehicle (LEV) product fleet in the usage phase. Three cluster algorithms are applied in the case study: hierarchical 
clustering with a Euclidean distance measurement and Ward Linkage, hierarchical clustering with a City-Block 
distance measurement and Ward Linkage, and partitioned clustering with k-means algorithm. The impact of the use 
of these different distance determination methods respectively fusion algorithms is analyzed. In addition, a
comparison with state-of-the-art risk analyses using Weibull distribution models with candidate prognosis (sudden 
death) for the whole population and the subpopulation of the risky parts in the product fleet is conducted. As a result, 
recommendations for field measures (recall and maintenance actions with regard to prioritization and partial 
maintenance) are derived and evaluated based on the data analyses.

Keywords: risk analysis, product fleet, load profile, cluster analysis, Weibull, recall, maintenance, light electric 
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1. Introduction
The increasing complexity of product 
functionality and manufacturing processes often 
leads to complex failure modes and reliability 
problems within the product usage phase. The 
mass production of consumer goods results in 
product fleets – like light electric vehicles (LEV)
– with comparable construction revision level. A 
failure mode leads to a spreading failure behavior
with regard to the product fleet and to an 
increasing percentage of customer complaints. 
The percentage of failures respectively 
complaints with regard to the product fleet 
(population) in the usage phase depends on the 
failure mode as well as the usage load profile. The 
goal of the original equipment manufacturer 
(OEM) is the early detection of the risky parts of 
the product fleet for the initiation of measures like 
recall actions (reactive) or maintenance planning 
(active). State of the art is the use of Weibull 
distribution models (Weibull 1951) in 

combination with candidate prognosis. The 
Weibull distribution model describes the failure 
behavior, the candidate prognosis (e.g. Kaplan-
Meier estimator (Kaplan Meier 1958) or Eckel-
candidate method (Eckel 1977)) considers the 
non-failed units (because of the censored data).
The precondition of these methods is the 
assumption, that every non-failed unit of the 
product fleet is a potential candidate (potential 
damage case). But this assumption is not fulfilled 
in every damage case, rather the number of 
potential candidates is depending on failure mode 
and usage load profile. The use of cluster analysis
allows the determination of risky parts in product 
fleets in the usage phase, based on product 
operating data, like driving distance, operating 
hours, cf. Bracke et al. (2016).

This paper outlines an approach to 
determine and identify risky parts in product 
fleets based on cluster analysis with respect to 
product failure behavior and usage load profile. 
The theory and application of the approach is 
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shown with the help of a data base of a light 
electric vehicle (LEV) product fleet in the usage 
phase.

2. Goals of research work and case study 
The overarching goal is the risk analysis 
regarding a product fleet in the usage phase in the 
face of an upcoming failure focus; cf. sec. 2.1. 
The approach of the risk analysis is shown within 
a case study dealing with a light electric vehicle 
(LEV) product fleet; cf. sec. 2.2.

2.1. Overarching goals
The goals of the research study are as follows:

1. Identification of risky parts (subpopulations;
failure candidates) via cluster analysis within 
the product fleet (population) in the use 
phase.

2. Analyzing the impact of the use of different 
distance determination methods respectively 
fusion algorithms within the cluster analyses.

3. Derivation of recommendations for reactive 
(recall; e.g. prioritization) and preventive 
(maintenance) field measures.

2.2. Case Study: Framework

Table 1. Case study light electric vehicle (LEV)
fleet in the usage phase; data set

Characteristic Value
LEV (N) 245
Driver 1,731
Ride 9,269
Damages 22
Life span variable Unit
Usage time [ - ]
Driven distance [ - ]
Locations x,y
Damage data
Damage cases (n) 22
Component L Function critical
Failure mode Wearout mechanism
Note: The LEV fleet data is an excerpt of a 
comprehensive fleet data set. The damage data is 
a synthetic data set and contains a realistic failure 
mode.

The approach for the product fleet risk analysis is 
applied on a data base regarding a light electric 
vehicle (LEV) fleet. Table 1 shows the 
characteristics and the data arrays of the LEV fleet 
data base.

3. Fundamentals
This section gives an overview regarding the 
statistical models, parameter estimators and 
cluster algorithms used in this paper.

3.1. Cluster analysis
Cluster analysis offers a way to classify 
univariate, bivariate and multivariate objects into 
groups (cluster) with certain similarity 
characteristics, cf. Backhaus et al. (2021). In 
general, cluster procedures can be distinguished 
in partitioned and hierarchical cluster procedures.

3.1.1. Hierarchical cluster procedures
Hierarchical cluster procedures can be 
distinguished in agglomerative (bottom-up) and 
divisive (top-down) procedures.

The process of a hierarchical cluster analysis 
can be divided into the following three steps:

1. Determination of (geometrical) distances,
2. Choice of the fusion algorithm,
3. Calculation the number of clusters.

In the first step the choice of distance measure is 
necessary to estimate the next neighbors. The 
most commonly used distance measurements are 
the Euclidian (cf. Eq. (1)) and the City-Block 
measurement (also called Manhattan metric or 
taxicab metric; cf. Eq. (2)), both used in this 
paper.

=  ( ) + ( ) (1)

=  | | + | | (2)

As a fusion algorithm the Ward Linkage (WL) 
method is used in this paper. Here, the clusters are 
merged that lead to the smallest increase in the 
variance of the new cluster. The diversity is 
determined according to Eq. (3). Ward (1963).

( , ) =
+

(3)
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3.1.2. Partitioned cluster procedures: k-means
The goal of the iterative k-means algorithm is the 
dividing of multidimensional data points i into 
clusters k, so that the quadratic deviation 
between the empirical mean respectively the 
cluster center ck of the particular cluster k with 
the associated data points i k is minimal; cf. 
Eq. (4).

( ) =  (4)

The algorithm pursues the goal of minimizing the 
quadratic error over all clusters = { 1, ... , n}; 
cf. Eq. (5). Since the squared error decreases with 
increasing number c of clusters, this must be 
fixed during the optimization. The proximity to 
the cluster centers is calculated by the Euclidean 
distance.

( ) =  (5)

3.1.3. Elbow-criterium
The decision regarding the proper number of 
clusters is an essential part of the cluster analysis. 
For this purpose, the elbow criterion (Thorndike 
1953) is used in this work. According to the elbow 
criterion, for ascending cluster numbers c the 
sum of the squared deviations within the clusters 
is determined according to Eq. (6); where j

denotes an observation, k denotes the particular 
cluster and ck denotes the associated cluster 
center.

=  (6)

If c is plotted for ascending cluster numbers c,
the knee point indicates the appropriate cluster 
number.

3.2. Weibull Model and Sudden Death
The use of a three-parameter Weibull distribution 
model is common in reliability analytics: The 
model is flexible and from a mathematical point 
of view easy to handle (Bracke 2022). The three-
parameter Weibull distribution model is given 
based on Eq. (7).

( ) = 1 exp (7)

Besides the life span variable t, the three 
parameters are threshold parameter t0 (theoretical 
time to first failure), scale parameter T 
(characteristic life span) and the shape parameter 
b. With the help of the Weibull Model, essential 
phases of the failure behavior of a system can be 
mapped: Early failure behavior, random failure 
behavior (constant failure rate) as well as failure 
behavior due to runtime. The estimation of the 
parameters can be done with the help of various 
methods, e.g. Maximum-Likelihood-Estimator, 
Least squares or method of moments. In this 
paper, the Maximum-Likelihood-Estimator 
(MLE) by Fisher (1912) is used.

The Weibull distribution model is fitted to 
the damage data. Within the case study risk 
analytics LEV fleet, the damage data analysis is 
carried out to a specific point of time; therefore 
some LEVs are failed, the others within the fleet 
are potential damage candidates. As a 
consequence, the data are right censored and a 
correction is needed regarding data (considering 
both damage data and candidates). Here, the 
simple correction regarding Johnson (1964) is 
used. The method according to the „Johnson 
ranking approach“ takes into account the non-
defaulted units (potential candidates) by assigning 
mean, hypothetical rank numbers in relation to the 
failed units. For further analytics, corrections,
which are considering the usage profile,
according to Kaplan Meier (1958) or Eckel (1977)
are recommended.

3.3. Field measures
This section deals with fundamentals of field 
measures with regard to failure prevention 
(active) and failure fixing (reactive) strategies 
with respect to product fleets in the usage phase.

3.3.1. Maintenance strategies
In principle, a differentiation is made between 
three different maintenance strategies (cf. Bracke 
(2022)): Damage-dependent maintenance (“fire-
fighting strategy”), time-based maintenance and 
condition-based maintenance. In the case of 
damage-based maintenance, the system failure is 
taken as the reason for performing the 
maintenance. In contrast, in time-based
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maintenance, maintenance work is performed at 
defined intervals, usually with reference to a life 
span variable interval (e.g. operating time). In 
condition-based maintenance, operating 
parameters and operating conditions are 
monitored (continuously by means of production 
data acquisition or by means of regular
inspections) and maintenance work is scheduled 
and performed depending on the system 
condition. Condition monitoring systems are 
often used for condition-based maintenance.

3.3.2. Recall actions
In principle, the manufacturer of a product has the 
following superior options for reacting to a case 
of damage in his product fleet in the field:

a) Recall: The manufacturer recalls parts of its 
product fleet from the field that may be 
affected by a possible failure. The recall is 
usually carried out in the case of faults that 
result in safety-critical risks or a significant 
functional impairment.

b) Maintenance: Depending on the occurrence 
of the fault, preventive maintenance can also 
be carried out during regular inspection 
intervals. The precondition is that the 
products have not yet reached the critical 
operating time with regard to the failure. This 
type of failure handling is usually chosen for 
faults that result in impaired comfort or less 
severe fault symptoms.

Other options, such as targeting users (but without 
an official recall), are also possible.

4. Approach: Risk analysis of product fleets
This section outlines a procedure for field data 
analysis against the background of an upcoming 
failure focus within a LEV fleet in the field use 
phase. The aim is to detect critical subpopulations 
within the fleet as a starting point for fault 
rectification (reactive; recall) and/or fault 
prevention (preventive; maintenance) in the field.

1. Analysis of operating and failure data of a 
product fleet in the usage phase. The result 
is a set of life span variables (e.g.: operating 
time, charging cycles, distance).

2. Determination of life span variables with 
regard to the failure mode based on damage 
data (e.g.: damage point of time, damage 
characteristics).

3. Failure behavior based on damage cases and 
risk prognosis based on the whole 
population.

4. Cluster analyses for identification of risky 
parts (subpopulation) of the product fleet 
(population) and estimation of potential 
high-risk candidates.

5. Failure behavior and risk prognosis based on 
subpopulation (clusters).

6. Statistical analysis regarding the efficiency 
of field measures: assessment of 
maintenance strategies and recall actions.

5. Case study: Risk analysis of LEV fleet
In this section, the presented approach (cf. sec. 4) 
is applied to the case study data base of the LEV 
fleet (cf. sec. 2.2). At first, a risk analysis is 
conducted for the whole population (sec. 5.1). 
Secondly, the risky parts in the product fleet are 
identified using three different cluster algorithms 
(sec. 5.2). The risk analysis is repeated for the 
determined risky part in the population (sec. 5.3). 
Lastly, field measures are derived (sec. 5.4) and 
evaluated regarding their efficiency (sec. 5.5).

5.1. Risk analysis regarding whole population
This section shows the determination of the 
failure behavior of component L based on known 
damage data and with respect to the LEV fleet in 
the usage phase.

Fig. 1 shows the failure behavior of 
component L (n = 22 claims; cumulative failure 
probabilities; double logarithmic representation) 
with the help of a Weibull distribution model fit 
(parameter estimation: MLE; t0 = 173; b = 2.47; 
T = 239; related to known damage cases; Fig.: 1: 
black line). Furthermore, the failure behavior is 
shown in relation to the entire fleet (N = 245): The 
failure probabilities were corrected using the 
Johnson approach and a Weibull model was fitted 
(parameter estimation: MLE; t0 = 173; b = 2.47; 
T = 353; related to whole fleet; Fig.: 1: grey line).
The failure mechanism wear is shown to be a 
typical, runtime-related failure behavior, which is 
reflected in the parameters of the Weibull 
distribution.
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Fig. 1. Failure behavior component L; Weibull model 
fit based on known damage cases (black line); failure 
behavior fleet (grey line); Weibull model fit based on 
Johnson correction.

5.2. Cluster analysis
Three different cluster algorithms are applied to 
the LEV fleet data set considering the variables 
driven distance and usage time: hierarchical 
clustering with Euclidean distance measurement 
and Ward Linkage, hierarchical clustering with 
City-Block measurement and Ward Linkage, cf. 
sec. 3.1.1, and partitioned clustering with k-
means algorithm, cf. sec. 3.1.2. For each cluster 
algorithm, the optimal number of clusters is 
determined using the Elbow-criterium, cf. sec. 
3.1.3. In Fig. 2, exemplarily the elbow plot of the 
hierarchical clustering with Euclidean distance 
measurement and Ward Linkage is shown.

Fig. 2. Elbow plot of hierarchical clustering with 
Euclidean distance measurement and Ward Linkage.

The knee point is determined at three or four 
clusters. Considering the data situation and the 
behavior of the LEV fleet, the optimal number of 
clusters is set to four. The Elbow plot of the other 
two cluster algorithms is similar, so the analyses 
are conducted with four clusters for each 
algorithm. In Fig. 3 to 5, the clustering results are 
plotted.

Fig. 3. Results of hierarchical clustering with Euclidean 
distance measurement and Ward Linkage; damage 
cases as red crosses.

Fig. 4. Results of hierarchical clustering with City-
Block distance measurement and Ward Linkage; 
damage cases as red crosses.
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Fig. 5. Results of partitioned clustering with k-means 
algorithm; damage cases as red crosses.

With all algorithms, four groups with similar 
characteristics are clustered:

Cluster A with short driven distance and 
short usage time,
Cluster B with medium driven distance and 
short to medium usage time,
Cluster C with long driven distance and 
medium usage time,
Cluster D with medium to long driven 
distance and long usage time.

The damage cases are predominantly classified in 
cluster C for all methods; in addition, there are 
some damage cases in cluster D and a few in 
cluster B.

Using the hierarchical clustering with 
Euclidean distance measurement and Ward 
Linkage the number of values in Cluster A is 
lower than in the other algorithms, the maxima of 
driven distance and usage time are lower in this 
case. Apart from that, the applied algorithms are 
mostly consistent concerning their clustering, the 
accordance is in all cases above 80 %. Comparing 
the hierarchical clustering with City-Block 
distance and Ward linkage to the k-means 
clustering the accordance amounts to nearly 96 %.

5.3. Failure behavior and risk analysis 
regarding clusters subpopulation
This section shows the determination of the 
failure behavior of component L based on known 
damage data and with respect to the cluster C
(hierarchical clustering with Euclidean distance 
measurement and Ward Linkage; subpopulation).

Fig. 6 shows the failure behavior of component L 
within cluster C (n = 18 claims; cumulative failure 
probabilities; double logarithmic representation) 
with the help of a Weibull distribution model fit 
(parameter estimation: MLE; t0 = 177; b = 2.32; 
T = 240; related to known damage cases; Fig.: 6: 
black line). Furthermore, the failure behavior is 
shown in relation to the entire cluster C fleet 
(N = 74): The failure probabilities were corrected 
using the Johnson approach and a Weibull model 
was fitted (parameter estimation: MLE; t0 = 177; 
b = 2.32; T = 301; related to whole fleet; Fig.: 6: 
grey line)).

Fig. 6. Failure behavior component L within cluster C; 
Weibull model fit based on known damage cases in 
cluster C (black line); failure behavior cluster C fleet 
(grey line); Weibull model fit based on Johnson 
correction.

The failure mechanism wear is shown to be a 
typical, runtime-related failure behavior, which is 
reflected in the parameters of the Weibull 
distribution.

5.4. Field measures
Two field measures can be derived from the 
results of the cluster analyses: Firstly, the recall 
action in the current damage case and, secondly, 
recommendations for future maintenance 
planning.

The recall action can be prioritized by the 
absolute amount (strategy A) or the percentage of 
damage cases (strategy B) in the different 
clusters. For strategy A, the number of damage 
cases in each cluster is determined. Then, the 
LEVs in the cluster with the most damage cases 
are prioritized recalled. In the presented use case, 
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these are the LEVs in cluster C – regardless of the 
cluster algorithm used, with negligible 
differences in the number of prioritized recalled 
LEVs. Secondly prioritized, the LEVs in cluster 
D would be recalled. The advantage of this 
strategy is the high coverage of damage cases due 
to the consideration of the absolute damage focus. 
In strategy B, the amount of damage cases is 
related to the total number of LEVs in the cluster.
The LEVs in the cluster with the percentual 
highest amount of damage cases are prioritized
recalled. In the presented use case, these are the 
LEVs in cluster D – regardless of the cluster 
algorithm used, only with negligible differences 
in the percentage. Secondly prioritized, the LEVs 
in cluster C would be recalled. The advantage of 
strategy B is the low number of LEVs to recall in 
the first recall action. The disadvantage is the low 
coverage of damage cases in the prioritized recall 
action. The quantification of these effects is 
shown in Table 2 in the next section. Note: If there 
is a safety-critical failure or a serious functional-
critical failure (e.g. vehicle down), all vehicles 
must of course be recalled. In this case, the cluster 
analysis gives indications with regard to the 
sequence.

For future LEV production batches, three 
maintenance strategies can be derived from the
results of the cluster analysis. Firstly, a threshold 
for the driven distance can be defined (strategy 1).
For every LEVs with a higher driven distance, 
maintenance actions are recommended. Strategy 
2 contains a threshold for the number of rides of a 
LEV derived from past damage cases. For every 
LEV with a number of rides above the threshold, 
maintenance actions are recommended. Lastly, 
maintenance actions are recommended for 
frequently driven LEVs in the fleet, defined by 
two thresholds based on the median of the driven 
distance and the median of the usage time 
(strategy 3). The efficiency of these maintenance 
strategies, assuming the same damage behavior in 
a future fleet with the same number of LEVs and 
the same load profile, is shown in Table 3 in the 
next section.

5.5. Summary: Efficiency of field measures: 
maintenance assessment

Table 2. Efficiency of recommended recall 
strategies with comparison of cluster algorithms.

strategy cluster 
algorithm

prioritized
recalled 
LEVs

percentage 
of detected 
damage 
cases

A euclidean 74 81.82 %
City-
Block

69 72.73 %

k-means 69 81.82 %
B euclidean 8 13.64 %

City-
Block

12 18.18 %

k-means 9 13.64 %
strategy A: Prioritized recall LEVs in cluster with 
absolute most damage cases.
strategy B: Prioritized recall LEVs in cluster with 
percentual most damage cases;
Note: Safety-critical failures or serious functional-
critical failures lead to a recall of all vehicles; cluster 
analysis gives indications regarding the sequence.

Table 3. Efficiency of recommended maintenance
strategies with comparison of cluster algorithms.

strategy maintained 
LEVs

percentage of detected 
damage cases

1 95 100 %
2 164 100 %
3 109 100 %
strategy 1: threshold for driven distance
strategy 2: threshold for number off rides
strategy 3: thresholds based on median of driven 
distance and usage time

6. Summary and Outlook
In this paper an approach to determine and 
identify risky parts in product fleets based on 
cluster analysis with respect to product failure 
behavior and usage load profile was presented,
using the example of light electric vehicles (LEV) 
in the usage phase. The three applied cluster 
algorithms (hierarchical clustering with Ward 
Linkage and Euclidean or City-Block distance 
measurement, partitioned clustering with k-
means algorithm) hardly differed regarding their 
group classification. For all algorithms, the 
optimal number of clusters was determined as 
four; comparing the algorithms the clustering 
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agrees over 80% to 96%. In future analytics it is 
planned to compare the results of the applied 
cluster algorithms using performance metrics, e.g. 
Silhouette Score.

From the results of the cluster analyses, field 
measures (recall and maintenance actions) were 
derived. For a prioritization (sequence) within the 
recall action, a cluster wise approach is 
recommended. Comparing the number of recalled 
LEVs and the percentage of detected damage 
cases, it was outlined, that an appropriate 
approach is focusing the recall action on LEVs in 
the cluster containing the absolute most damage 
cases. The k-means algorithm is highlighted as 
the best cluster algorithm in this recall strategy. In 
contrast, the prioritization (sequence) within 
recall action with the percentual most damage 
cases is no appropriate approach due to the low 
coverage of damage cases in the product fleet in 
the prioritized recall action.

In comparison to state-of-the-art methods 
(Weibull distribution model with candidate 
prognosis) using cluster analysis for the 
identification of high-risk products, the 
prioritization (sequence) of field measures can be 
outlined. In case product comfort complaints 
(failures like noises), the field measure can be 
focused on certain clusters.

In addition, suggestions for the maintenance 
planning of future LEV fleets were derived from 
the data analytics. Thresholds for the damage-
related parameters were defined. Assuming the 
same load profile as in the case study, the use of a 
threshold of the driven distance or the medians of 
the driven distance and usage time is 
recommended to minimize the number of LEVs 
to be maintained while providing a 100 %
detection of risky products.

Comparing the failure behavior of 
component L based on all known damage events 
(population) with the known damage events 
within cluster C (subpopulation), only minor 
differences are noticeable. The estimated 
parameters of the Weibull distribution models 
differed only slightly. This may be due to the fact 
that only four of all known failure events are not 
part of Cluster C. On the other hand, the failure 
behavior in relation to the entire fleet (population) 
shows a clear difference in contrast to that in 
relation to cluster C (subpopulation). The failure 
probability in relation to cluster C is significantly 
higher, due to the smaller size of the sub-

population (LEV cluster C fleet) compared to the 
total population (LEV fleet). For a risk forecast, 
the failure behavior per cluster can be determined; 
a comparison of the failure probabilities provides 
indicators of the sequence in which the clusters 
are processed in the event of a field measure.
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