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Remaining useful life (RUL) prediction is subjected to multiple uncertainty sources, such as measurement errors,
operating conditions, and model representation capability. The quantification of the prediction uncertainty is
important for assisting decision-making. In literature, stochastic processes have proven their efficiency in handling
uncertainties in prognostics by providing RUL distribution. However, they have limitations in their adaptability to
capture the dynamic behaviors of complex systems. To address this issue, it is recommended to employ deep learning
(DL) methods that usually generate point-wise RUL predictions instead of RUL distribution. Therefore, the objective
of this work is to investigate the capacity of DL methods to manipulate uncertainty in RUL predictions. Particularly,
the probabilistic deep learning (PDL) framework is used to predict the RUL distribution instead of a point-wise RUL
value. The obtained results by PDL are compared with the analytic solutions of the stochastic processes to highlight
the uncertainty management capacity of PDL.

Keywords: Stochastic processes, Prognostics and Health Management, Deep Learning, RUL prediction, Uncertainty
management.

1. Introduction

Nowadays, the rapid growth of modern tech-

nologies in Internet of Things (IoT) and sens-

ing platforms is enabling a wide range and a

high quantity of condition monitoring data. This

has opened up many development prospects for

Prognostics and Health Management (PHM) both

in the research community and within indus-

try. One of PHM’s main tasks is prognostics, i.e

Remaining Useful Life (RUL) predictions to pre-

vent unexpected system downtime. In literature,

model-based prognostic approaches use explicit

mathematical models or stochastic processes to

model degradation evolution over time and pre-

dict the RUL distribution Kahle et al. (2016);

Nguyen et al. (2018); Zhang et al. (2021). However,

with the increasing complexity of modern indus-

trial systems, it is challenging to obtain models

of their degradation. Alternatively, data-driven

methods provide an alternative to model-based

approaches by usingmonitoring data to learn sys-

tem behavior and degradation trends. With the

increasing availability of large amounts of data

in industry, data-driven approaches are promis-

ing for developing accurate prognostic models,

even for complex systems. The performance of

traditional methods, e.g. support vector machine,

and logistic regression, strictly depends on hand-

crafted features Nguyen et al. (2022). Alterna-

tively, deep learning (DL) methods, which al-

low automatic extracting and creating useful fea-

tures by themselves without expert knowledge,

become one of the most popular trends in recent

studies Nguyen and Medjaher (2019). However,

they generally provide a precise value without

a quantification of the output uncertainty and

require a large set of observations to train the

model.

In practice, as prognostics deals with prediction

of future system behavior, numerous sources of

uncertainties exist in RUL predictions Liu et al.

(2019). Therefore, managing uncertainty is cru-

cial for effective prognostics. Recent studies have

explored probabilistic deep learning (PDL) to

quantify prognostic uncertainties Nguyen et al.

(2022); Dhada et al. (2023). However, to our
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knowledge, no previous studies have compared

the capacity of PDL to handle prognostic uncer-

tainties against stochastic processes. This study

aims to address this gap. To do that, we gen-

erate degradation data using multiple stochas-

tic processes, such as Wiener and Gamma pro-

cesses with varying levels of variation. PDLs are

trained on this data to predict RUL, and the results

are compared with analytic solutions from the

stochastic process to assess the advantages and

disadvantages of each technique.

The remainder of the paper is as follows. Section 2

presents the theoretical background of the used

techniques. In Section 3, we provide the descrip-

tion of the used methodology to investigate the

capacity of PDLs to handle uncertainty. Section 4

shows the numerical results. Finally, a conclusion

and a comparative table are presented in Sec-

tion 5.

2. Theoretical backgrounds

2.1. Uncertainty management by Gamma
processes

Gamma process is one of

the most popular stochastic process that has been

used to model stochastic deterioration (see van

Noortwijk (2009)). It is a continuous-time process

and it is well adapted for modeling accumulative

(non-decreasing) deterioration such as corrosion,

erosion, and crack growth.

Definiiton of gamma process. Let A : R+ →
R+ be a measurable, increasing and right-

continuous function with A(0) = 0 and b > 0. A

stochastic processX is said to be gamma process

Y = (Yt)t≥0 ∼ Γ(A(.), b), with A(.) as shape

function and b as scale parameter, if (1) X0 = 0

almost surely, (2) the increments are indepen-

dent and non-negative, and (3) the increments are

gamma distributed.

The probability density function of an increment

Xt −Xs (with 0 < s < t) is given by

f(x) =
bA(t)−A(s)

Γ(A(t)−A(s))
xA(t)−A(s)−1 exp(−bx),

∀x ≥ 0 and where Γ(A(t) − A(s)) =∫∞
0

yA(t)−A(s)−1 exp(−y)dy.

The mean and variance of Yt are given by:

E[Xt] =
A(t)
b , V[Xt] =

A(t)
b2 for all t ≥ 0.

Note that, based on the form of the shape func-

tion, the gamma process is said to be:

• Homogeneous ifA(t) is a linear function

in t: A(t) = at, a > 0.

• Non-homogeneous if A(t) is a non-

linear function: A(t) = atc, a > 0,

c > 0.

Remaining useful life prediction. Let L > 0

denote a failure threshold. Given a degradation

level Xt = x at time t, the cumulative distribu-

tion of the remaining useful life (RUL) of a gamma

process is given by Paroissin and Salami (2014):

FRUL(x,t)
(u) =

Γ(A(u+ t)−A(t), (L− xt)b)

Γ(A(u+ t)−A(t))
,

(1)

where Γ(·, ·) is the upper incomplete Gamma

function.

Parameter estimation. Based on the collected

sample data (degradation records at observation

times), the parameters of gamma process are esti-

mated using theMaximum Likelihood Estimation

(MLE). The estimates are obtained bymaximizing

the following log-likelihood function:

l = ln

(
n∏

i=1

b(A(ti)−A(ti−1))

Γ(A(ti)−A(ti−1))
×

ΔX
A(ti)−A(ti−1)−1
i exp(−bΔXi),

(2)

where ΔXi = Xti −Xti−1 for i = 1, . . . , n.

2.2. Deep learning for uncertainty
handling

In this subsection, we introduce PDL frame-

work to predict the parameters that characterize

the RUL distribution at time t of component i.

Figure 1 presents an overview of the proposed

framework. It consists of the following layers:

(1) Input layer: The prototype brings formalized

data, represented as a 3D tensor with shape

(ns, nt, m), into the network for processing.



1772 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

No. of samples

3D Tensor

Ti
m

e�
st

ep
s

No
.�f
ea
tu
re
s

Input layer

3D Tensor

M
as

ki
ng

�LSTM or GRU layers with dropout

1st unit�

2nd unit�

n1-th unit

1st unit�

2nd unit�

n2-th unit

1st hidden layer 2nd hidden layer

Time
distributed

layer

Hidden layer
Output layer 

Lognormal�or
Weibull layer 

Ti
m

e�
st

ep
s

No. of samples

...

Fig. 1.: Architecture of probabilistic deep learning framework for RUL prediction.

Recall that θti is the output vector characterizing RUL distribution of trajectory i at time t, including 2

parameter values of Lognormal (μt
i and σt

i ) or Weibull distribution (αt
i and βt

i ).

A masking layer is used during training to

skip the right padding and avoid bias errors.

(2) Hidden layer: It is the principal part of the

network, including two DL layers and one

time-distributed layer.

For DL part, we specifically investigate in

this paper, the effectiveness of Long short-

term memory (LSTM) and Gated Recurrent

Unit (GRU) architectures for processing time-

series data. However, it is important to note

that other deep learning architectures, such

as convolutional neural networks (CNNs)

or Transformers, may also be used for this

framework depending on the characteristics

of the input data. The details of LSTM and

GRU models can be consulted in the paper

Hochreiter and Schmidhuber (1997) and Cho

et al. (2014) respectively. These two mod-

els are widely used in prognostics due to

their ability to capture long-term dependen-

cies and handle vanishing gradient problems.

They achieve this by using gates that allow

the model to selectively forget or remember

information over time.

To avoid the overfitting issue, the “Dropout”

regularization technique is added to every

LSTM (or GRU) layer Hinton et al. (2012).

It involves randomly removing some hidden

units in a neural network during training by

a defined probability.

Time distributed layer applies the same

fully-connected operation to every time step

of the DL layer outputs, producing an output

vector per time step with dimensions based

on the number of RUL distribution parame-

ters in the output layer. For example, if the

RUL follows a Lognormal distribution, the

time-distributed layer will have 2 units rep-

resenting μ and σ.

(3) Output layer: It is defined to take into account

particular characteristics of RUL distribution

parameters when training the model. It pro-

vides the proper parameters representing the

RUL distribution instead of a point-wise RUL

prediction. In this paper, the Weibull (WB)

distribution and Lognormal (LN) distribution

are chosen to manage the uncertainty in

RUL prediction because they are commonly

used to model unit lifetimes, can only take

positive values, and are based on a multi-

plicative growth model suitable for diverse

components. While we focus on these two

specific distributions in this study, it is im-

portant to note that other probability dis-

tributions could also be integrated into the

proposed framework by defining the output

layer with the appropriate activation func-

tion and the appropriate loss function. This

allows for a flexible and adaptable approach

to modeling RUL distribution based on the

specific needs and characteristics of differ-

ent machinery and equipment. Particularly,

instead of predicting a target RUL value, y∗,
the proposed PDL framework will provide a

couple of parameters characterizing RUL dis-

tribution to maximize the probability when
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RULt
i = y∗. For instance, if RUL follows the

Lognormal distribution, the PDL framework

provides two parameters (μt
i, σ

t
i), while it

gives two parameters (αt
i, β

t
i ) for the Weibull

distribution. To do this, it is essential to define

activation functions tailored to the character-

istics of these parameters and a loss function

designed to maximize the probability of RUL

values for a given component i from its initial

observation time up until the time at which

its observations were recorded. The method-

ology for defining such activation and loss

functions for Lognormal and Weibull distri-

butions is explicated in Nguyen et al. (2022)

and Dhada et al. (2023). During the training

process, the PDL model’s weights and biases

will be iteratively adjusted to minimize the

negative logarithm likelihood (NLL) function,

which is expressed by the following equation,

thereby obtaining optimal sets of RUL distri-

bution parameters (θti) for the component i:

NLL =

ns∑
i=1

nt∑
t=1

− logL(θti |RUL∗
(0:t)

i ). (3)

3. Investigation methodology

This section aims to present the methodology

to investigate the capacity of PDL for handling

uncertainties in RUL predictions. Subsection 3.1

describes the design of numerical experiments

while subsection 3.2 presents the metrics used to

evaluate the point-wise accuracy and the uncer-

tainty management capacity of the investigated

models.

3.1. Description of numerical
experiments

Without loss of generality, let’s assume that

there exist components whose degradation pro-

cess follows stochastic processes. The compo-

nent is failed when its degradation level exceeds

L = 80. The experimental setup is illustrated

in Figure 2. To simulate the run-to-failure pro-

cesses, 200 degradation trajectories are generated

using the homogeneous gamma (HGP) and non-

homogeneous gamma process (NHGP), with a

time step of 0.2-time units (t.u). The parameters

Stochastic
process

Generate data
Estimate

parameters of
HP or NHP

Training PDL�

HP or NHP with
the estimated
parameters

Trained PDL�

100 testing
trajectories

RUL for
testing

RUL
distribution,

median value

RUL
distribution,

median value

Compare

100 training
trajectories

RUL for
training

Fig. 2.: Design of numerical experiments.

HG, NHG, and PDL refer to homogeneous gamma

process, non-homogeneous gamma process, and

probabilistic deep learning.

of HP and NHGP are selected in such a way

that their mean value of the degradation level at

t = 100 is 100 with the coefficients of variation

(CV) set to 10%, 30%, and 50% respectively. The

corresponding parameters are listed in Table 1.

Table 1.: Parameters of stochastic processes.

HGP NHGP NHWP

CV = 10% a = 1,
b = 1

b = 1,
a = 0.01,
c = 2

e = 0.01,
f = 2

CV = 30% a = 0.11,
b = 0.11

b = 0.11,
a = 0.001,
c = 2

e = 0.09,
f = 0.22

CV = 50% a = 0.04,
b = 0.04

b = 0.04,
a = 0.0001,
c = 2

e = 0.25,
f = 0.08

Among 200 components’ degradation trajecto-

ries, 100 trajectories are employed to estimate the

parameters of the corresponding HGP and NHGP

process and also to train PDLmodels as presented

in Section 2. The configuration parameters of the

PDL models are presented in Table 2.

Table 2.: PDL models’ configuration parameters.

1st LSTM (or

GRU) layer

2nd LSTM (or

GRU) layer

Dropout Learning

rate

100 units 50 units 0.2 0.001

For testing, the remaining 100 trajectories are

used to evaluate the capacity of PDL in handling

prognostic uncertainties. Specifically, we com-

pare the RUL distribution and its median value
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obtained by PDL with those of the HGP and

NHGP processes corresponding to the stochastic

data under consideration. Note that for the test-

ing phase, the 100 run-to-failure trajectories are

randomly truncated before reaching their failure

time, as illustrated in Figures 3 and 4. In addition,

to evaluate the adaptability of PDL in predicting

RUL when degradation data is produced by non-

Gamma processes, we keep the architecture and

configuration parameters of the PDL models and

train them with degradation data generated by

the non-homogeneous Wiener process (NHWP).

Its independent increments are given by dXt =

μ(t)dt + σ(t)dBt, where μ(t) = fet, σ(t) =√
2et, and Bt denotes a standard Brownian mo-

tion. The process parameters (shown in Table 1)

are selected such that their mean failure time is

100 t.u, with coefficients of variation (CV) set to

10%, 30%, and 50%, respectively. Note that the

HGP and NHGP models cannot predict RUL in

this case.

Fig. 3.: Testing data generated by HGP, CV=30%.

Fig. 4.: Testing data generated by NHGP, CV=30%.

3.2. Performance evaluation metrics

This section aims to present the metrics for per-

formance evaluation of the investigated models

on both aspects: point-wise prediction and uncer-

tainty management.

3.2.1. Point prediction accuracy metrics

Given M the total number of prediction points

and dk be the difference between the k-th actual

(RUL∗k) and estimated ( ˆRULk) RUL values, the

performance of prognostic models can be evalu-

ated by the following point prediction accuracy

metrics.

Mean squared error (MSE): MSE is a widely

used metric to evaluate the point prediction ac-

curacy Gugulothu et al. (2017) by the following

formulation:

MSE =
1

M

M∑
k=1

d2k (4)

where dk = RUL∗k − ˆRULk .

Scoring function (SF): SF, which is a popular

metric used to evaluate the performance of prog-

nostics algorithms Gugulothu et al. (2017), allows

punishing late prediction more heavily than an

early prediction, as defined below,

SF =
1

M

M∑
k=1

sk; sk =

{
e−

dk
13 − 1, if dk < 0

e
dk
10 − 1, if dk ≥ 0

(5)

3.2.2. Uncertain prediction evaluation metrics

PICP: Prediction interval coverage percentage
(PICP) is widely used in literature Gao et al.
(2020). It represents the probability that the true
targets (RUL∗k) fall within the lower and upper
bounds ([Lα(RULk), Uα(RULk)]) of predictions,
RULk , with a prescribed confidence level (1−α).
It is given by: PICP = 1

M
∑M

k=1 I(RUL∗k)
where

I(RUL∗
k) =

{
1, if RUL∗

k ∈ [Lα( ˆRULk), Uα( ˆRULk)]

0, if RUL∗
k /∈ [Lα( ˆRULk), Uα( ˆRULk)]

Note that the performance of the prediction

model is better when the values of SF and MSE

are smaller while the accuracy PICP is greater.

4. Result analysis

The presented results in Table 3 compare the per-

formance of different models in predicting RUL

of the components whose degradation evolution

follows the homogeneous gamma process (HGP).

Three evaluationmetrics have been used to assess

the performance of the models, including RMSE,
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Table 3.: Testing results for data generated by

homogenous gamma process.

CV Model RMSE SF PICP

10% HGP 5.53 0.53 0.85
LSTM + WB 5.99 0.58 0.99
GRU + WB 6 0.64 0.99
LSTM + LN 6.29 0.72 0.86
GRU + LN 6.53 0.78 0.88

30% HGP 29.88 15.76 1
LSTM + WB 20.18 6.72 0.97
GRU + WB 19.87 7.14 0.98
LSTM + LN 23.99 11.69 0.95
GRU + LN 21.40 7.76 0.92

50% HGP 42.7 710 1
LSTM + WB 53.51 1636.79 0.89
GRU + WB 54.55 1159.03 0.86
LSTM + LN 54.95 931.908 0.87
GRU + LN 54.11 919.773 0.86

SF, and PICP. The lower the value of RMSE and SF,

the better the point-wise accuracy of the models.

However, for PICP, the higher its value, the better

the model’s uncertainty management ability.

The results show that HGP is the best suitable

model for predicting RUL in the dataset generated

by HGP. However, all PDL models (LSTM + WB,

GRU + WB, LSTM + LN, and GRU + LN) demon-

strate sufficiently good performance for all three

levels of the coefficient of variation (10%, 30%, and

50%). Among the PDL models, LSTM + WB and

GRU + WB perform better than LSTM + LN and

GRU + LN for all three levels of the coefficient of

variation. It is also noteworthy that as the coeffi-

cient of variation increases, the models’ perfor-

mance decreases, which implies that predicting

RUL becomes more challenging in more variable

conditions.

The results presented in Table 4 show that the

PDL models outperform the NHGP when the co-

efficient of variation is 30%. For the coefficient of

variation of 50%, the NHGP model outperforms

all the PDL models for the RMSE and SF metrics,

indicating its better ability to provide accurate

point predictions. However, all PDL models pro-

vide comparable results, especially for PICP met-

Table 4.: Testing results for data generated by

nonhomogenous gamma process.

CV Model RMSE SF PICP

10% NHGP 4.26 0.37 0.93
LSTM + WB 5.54 0.63 1
GRU + WB 5.49 0.63 0.98
LSTM + LN 4.75 0.50 0.91
GRU + LN 5.37 0.60 0.81

30% NHGP 13.66 1.99 0.93
LSTM + WB 12.32 2.30 0.94
GRU + WB 11.35 1.94 0.93
LSTM + LN 11.78 1.92 0.93
GRU + LN 11.79 1.91 0.93

50% NHGP 23.03 7.79 0.91
LSTM + WB 25.71 14.01 0.91
GRU + WB 25.26 20.78 0.92
LSTM + LN 28.25 28.52 0.89
GRU + LN 29.01 27.59 0.97

rics, indicating their ability to manage uncertain-

ties. It is interesting to note that the PDL mod-

els based on LSTM and GRU perform similarly

and that the choice of probability distribution

(Weibull or Lognormal) does not significantly af-

fect the performance of the models.

The results presented in Table 5 demonstrate the

adaptability of PDL for predicting RUL in degra-

dation data generated by the nonhomogenous

Wiener process. It is important to note that the

HGP and NHGP models are not suitable for pre-

dicting RUL in this case due to the possibility of

negative increments in the degradation process.

For the dataset with a coefficient of variation of

10%, all PDLmodels achieved good results. As the

coefficient of variation increases to 30% and 50%,

the performance of the PDL models decreases,

with higher RMSE and SF values and lower PICP

values. Among them, LSTM +WB shows the best

performance for this dataset according to PICP

metrics. However, none of the PDL models dis-

play superior point-wise accuracy compared to

the others, in all scenarios.

In summary, the findings in this section show

that the selection of DL architecture (LSTM or

GRU) and the choice of probability distribution
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Table 5.: Testing results for data generated by

nonhomogenous Wiener process.

CV Model RMSE SF PICP

10% LSTM + WB 4.57 0.4 0.98
GRU + WB 4.41 0.43 0.96
LSTM + LN 4.61 0.43 0.93
GRU + LN 4.41 0.44 0.96

30% LSTM + WB 14.56 3.29 0.95
GRU + WB 13.34 2.43 0.92
LSTM + LN 13.98 2.72 0.84
GRU + LN 13.33 2.37 0.91

50% LSTM + WB 20.14 9.94 0.93
GRU + WB 21.55 14.16 0.88
LSTM + LN 22.62 14.3 0.84
GRU + LN 21.31 17.54 0.85

(Weibull or Lognormal) do not significantly in-

fluence the performance of PDL models. This

emphasizes the potential of PDL models in ef-

fectively managing uncertainties associated with

RUL predictions. In fact, in cases where the degra-

dation process is not well understood, a PDL

model can be appliedwithout a strict requirement

to select a specific DL architecture or probability

distribution, while still achieving sufficiently ac-

curate results.

5. Discussion and conclusion

This study has investigated the capacity of PDL

models to manage uncertainty in predicting RUL

relative to several stochastic processes by assum-

ing a sufficient set of trajectories to train the

models. The performance of each model was as-

sessed using specific criteria. The results indicate

that PDL models are capable of handling tem-

poral uncertainty when data are generated from

Gamma and Wiener processes. Furthermore, the

selection of DL architecture (LSTM or GRU) and

probability distribution (Weibull or Lognormal)

did not significantly affect the performance of

PDL models. This highlights the potential of PDL

models to effectively manage uncertainties asso-

ciated with RUL predictions, especially in cases

where the degradation process is not well under-

stood. The ability to apply a PDL model without

the need for a specific DL architecture or proba-

bility distribution can reduce the risk of making

incorrect decisions, such as safety problems or

high maintenance costs Al Masry et al. (2017b).

The advantages and disadvantages of PDLmodels

and stochastic processes for handling RUL un-

certainty are summarized in Table 6. Addition-

ally, some stochastic processes, such as extended

gamma processes Al Masry et al. (2017a) and

transformed gamma process Giorgio et al. (2018),

may be challenging to implement in practice. Fu-

ture research may focus on applying PDL models

to extended and transformed gamma processes

and extending the methodology to account for

statistical dependencies between components.
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