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Stochastic model updating has been increasingly utilized in various engineering applications to quantify parameter 
uncertainty from multiple measurement datasets. We have recently developed a stochastic updating framework, in 
which the parameter distributions are approximated by staircase density functions (SDFs). This framework is 
applicable without any prior knowledge of the distribution formats; thus, it can be considered as a distribution-free 
approach. On the other hand, measurement uncertainty should also be considered in model updating since the 
measurement is typically performed under hard-to-control randomness. However, in model updating, it is difficult 
to distinguish different types of uncertainties in the measurement datasets, and measurement uncertainty is often 
embedded in parameter uncertainty. To address this issue, this study employs the Bayesian model class selection 
framework, in which different types of probabilistic models are used to represent different types of uncertainties and 
the most appropriate model is determined based on the associated evidence. In this sense, the proposed framework 
does not require any prior knowledge about the sources of uncertainty in the measurement datasets. Simple 
numerical examples are used to demonstrate the proposed framework. 
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1. Introduction 
Stochastic model updating has gained increasing 
attention as a powerful technique to quantify 
parameter uncertainty by assigning a probabilistic 
model to the model parameters and calibrating its 
hyper parameters from multiple measurement 
datasets. Thus, the updating results depend on the 
probabilistic model assumption. 

We have recently developed a distribution-
free approach to stochastic model updating, where 
the probabilistic model is defined using SDFs 
(Kitahara et al., 2022). This approach relies only 
on the bounded set of the probabilistic model, and 
within this set, a broad range of distributions are 
arbitrarily approximated using SDFs. 

On the other hand, measurement uncertainty 
should also be considered in model updating since 
the measurement is typically done under hard-to-

control randomness. In stochastic updating, these 
two types of uncertainties are often not separated 
and are both characterized using the parameter 
distribution. However, this can result in the over-
estimation of parameter uncertainty. 

In this study, the aforementioned framework 
is combined with Bayesian model class selection 
(Beck and Yuen, 2004) to quantify different types 
of uncertainties. This framework uses different 
probabilistic model classes to represent different 
types of uncertainties. The optimal model class is 
then determined based on the evidence that can be 
computed as the by-product in the model updating 
through a Bayesian fashion.  

2. Outline of the Proposed Framework 
In this framework, the following three probabilistic 
model classes are considered: 
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(1) 

(2) 

(3) 

where  is the simulator with the model parameter 
;  is a random variable that follows the 

Gaussian distribution with the zero mean and the 
variance ;  is the staircase random 
variable with the lower and upper bounds  and  
and hyper parameters . In these model classes, 
measurement uncertainty is given as the Gaussian 
variable  while parameter uncertainty is 
modeled as the staircase variable . 

The hyper parameters, i.e.,  and , can be 
calibrated using the well-known Bayes’ theorem: 

(4) 

where  is the prior distribution of  that 
consists of  or/and ;  denotes the 
posterior distribution of ;  denotes 
the likelihood function based on the measurement 
datasets ;  indicates the evidence for 
the model class . The posterior distribution is 
obtained via the transitional Markov chain Monte 
Carlo (TMCMC) algorithm. In its procedure, the 
evidence is obtained as a by-product, which serves 
as the plausibility measure of the model class given 
the measurement datasets. Thus, the optimal model 
class can be determined as the one that provides the 
largest evidence value. 

3. Numerical Example 
The framework is demonstrated using examples 
of a polynomial function 

. We consider three synthetic datasets with the 
same sample size of 1000; (i) datasets with 
measurement uncertainty, where the true system 
response is contaminated by Gaussian noise 

 with  chosen as 10 % of the system 
response; (ii) datasets with parameter uncertainty 
which are generated by assigning the parameter 
distribution  ; (iii) datasets with both 
measurement and parameter uncertainty, in which 
the multiple system responses are contaminated 
by the Gaussian noise. 

For each datasets, the proposed framework 
is carried out using the three model classes above; 

hence, a total of 9 TMCMC procedures are in use. 
The evidence values obtained are summarized in 
Table 1. It can be seen that, for each datasets, the 
appropriate model class is chosen as the optimal 
one as it provides the largest evidence value. 

Table 1. Evidence for each model class. 

Datasets Model class Evidence 
(i) Measurement 
uncertainty 

  
  
  

(ii) Parameter 
uncertainty 

  
  
  

(iii) Both 
uncertainties 

  
  
  

 
For datasets (iii), the calibrated distribution 

of  is obtained for  and  as SDF assigning 
the posterior estimates of  and shown in Fig. 1. 
As can be seen,  results in the overestimation 
of parameter uncertainty whereas  provides an 
appropriate estimation. 

 
 

Fig. 1. Calibrated PDF of  for (a):  and (b): . 

4. Conclusion 
An uncertainty quantification approach combining 
Bayesian model updating and model class selection 
is developed. Simple numerical examples indicate 
that the approach can distinguish different sources 
of uncertainties and quantify parameter uncertainty 
as appropriate. 
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