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Health monitoring of remote critical infrastructure, such as offshore wind turbines, is complex and expensive.
For the offshore energy sector, the accessibility for on-site asset inspection is hampered due to their harsh and
remote location. In this context, inspection drones are crucial assets. They can perform multiple tasks, which
are benefitial for the industry and society, including the improved reliability of critical and remote infrastructure.
However, the reliability and safety assurance of inspection drones is complex, as they are autonomous systems and
they require incorporating run-time operation and degradation knowledge. Focusing on the health assessment of
inspection drones, their battery is a key component, which is a single point of failure and determines the probability
of a successful operation. In this context, this paper presents a novel concept for inspection drone battery health
assessment through a probabilistic hybrid approach which combines physics-based battery discharge models with
data-driven error forecasting strategies. Results are validated with real data obtained through different offshore wind
inspection flights of drones.
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1. Introduction

The revolution in robotics and autonomous sys-

tems (RAS) is unstoppable. The advance of

autonomous system applications, such as au-

tonomous transport and autonomous inspections,

generate multiple benefits for the industry and

society, including the improved driving security in

autonomous transport, and improved reliability of

critical and remote infrastructure through special-

ized robots and drones Feng et al. (2021).

However, the reliability assurance of RAS is

complex, as it requires incorporating advanced

intelligence that should evolve according to run-

time operation Floreano and Wood (2015); Elg-

hazel et al. (2015). Focusing on inspection drones

for offshore wind turbine inspections, the chal-

lenging yet exciting operation context hampers the

reliability assurance of drones Wang et al. (2022).

Different technological solutions have emerged

to improve the design and reliability of drones.

Most of the technological configurations include

a combination of electrical and mechanical com-

ponents, along with onboard software intelligence

to adopt decisions without direct human inter-
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vention. In this context, using the ever-increasing

prognostics and health management (PHM) so-

lutions, it is possible to develop an accurate

drone health monitoring approach through ma-

chine learning and uncertainty modelling methods

Zio (2022).

Batteries are key components for the safe and

reliable operation of drones, and accordingly, this

paper presents a novel health-state estimation ap-

proach focused on batteries. There are different

data-driven and physics-based health-state estima-

tion methods Vanem et al. (2021). Focusing on

unmanned aerial vehicles (UAVs), there have been

proposed different battery health-state estimation

methods, mainly centred on Lithium-Polymer (Li-

PO) batteries . Eleftheroglou et al. (2019) pre-

sented a fully data-driven solution for UAV bat-

tery prognostics. A fully data-driven solution re-

quires learning the battery operation dynamics

from data and this seems a challenging activity.

An interesting alternative is to combine physics-

based and data-driven solutions in hybrid state-of-

charge (SOC) estimation and prognostics models

Nascimento et al. (2021). In this direction, Paez

et al. (2018) adapted the physics-based Li-Ion

model for Li-PO applications for UAVs and Sierra

et al. (2019) presented a ubiquitous Li-Po battery

discharge model for UAVs.

However, to the best of authors’ knowledge,

error-correction configurations have not been used

for dynamic SOC estimation. Accordingly, in-

spired from Aizpurua et al. (2023), the contribu-

tion of this research is the proposal of a novel

hybrid SOC solution, which combines physics-

based battery discharge models and probabilistic

data-driven error prediction models in an error-

correction configuration. Namely, physics-based

battery discharge models are dynamically cor-

rected through data-driven probabilistic forecast-

ing strategies.

The proposed approach enables the adaptive

tuning of physics-based battery discharge meth-

ods via data-driven methods and error-correction

configuration strategies. Through a calibration and

adaptation stage, the proposed approach can learn

battery discharge dynamics from a physics-based

Li-Ion battery discharge model and then transfer

the discharge dynamics into Li-PO battery dis-

charge models. Results are validated with real data

obtained through different offshore wind inspec-

tion flights of drones.

The remainder of this article is organized as fol-

lows. Section 2 presents the proposed approach.

Section 3 presents the analysed case study. Sec-

tion 4 presents results tested on a number of flights

of real inspection drones. Section 5 presents dis-

cussions, and finally, Section 6 concludes.

2. Proposed Approach

The proposed approach is shown in Fig. 1.

Namely, the physics-based modelling ap-

proach defines the physics-of-discharge of the bat-

tery. This model uses the input loading at in-

stant t, id(t), which is post-processed to extract

error precursor variables through a feature
processing step, which will assist in the

error prediction stage. Finally, the last

stage focuses on the dynamic error correction to

estimate the discharge voltage vd(t).
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Fig. 1.: Hybrid battery discharge approach.

2.1. Physics-based discharge modelling

The work by Daigle and Kulkarni (2013) devel-

oped an electrochemistry-based battery discharge

model. The battery voltages are defined through

the amount of charge in electrodes (positive and

negative). Each electrode is divided into a sur-

face layer (s) and a bulk layer (b). The differen-

tial equations define the charge dynamics through

these volumes.

The voltages are described by the following set

of equations Daigle and Kulkarni (2013):

VU,i = U0 +
RT

nF
ln

(
1− xs,i

xs,i

)
+ VINT,i (1)
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VINT,i =
1

nF

⎛
⎝ Ni∑

k=0

Ai,k

(
(2xi − 1)

k+1 − 2xik(1− xi)

(2xi − 1)1−k

)⎞
⎠

(2)

Vo = iappRo (3)

Vn,i =
RT

Fα
arcsinh

(
Ji

2Ji0

)
(4)

Ji =
i

Si

(5)

Ji0 = ki(1− xs,i)
α
(xs,i)

1−α
(6)

V = VU,p − VU,n − V
′
o − V

′
n,p − V

′
n,n (7)

V̇
′
o = (Vo − V

′
o)/τo (8)

V̇
′
n,p = (Vn,p − V

′
n,p)/τn,p (9)

V̇
′
n,n = (Vn,n − V

′
n,n)/τn,n (10)

where U0 is a reference potential, R is the uni-

versal gas constant, T is the electrode temperature

(K), n is the number of electrons transferred in

the reaction (n=1, for Li-Ion), F is the Faraday’s

constant, Ji is the current density, Ji0 is the ex-

change current density, and ki is a lumped pa-

rameter of several constants including a rate co-

efficient, electrolyte concentration, and maximum

ion concentration. VINT,i is the activity correction

term (0 ideal conditions). We use the Redlich-

Kister expansion with Np=12 and Nn=0 Daigle

and Kulkarni (2013). The τ parameters are em-

pirical time constants used to model the voltage-

change transition dynamics.

Eqs. (1)-(10) define the discharge dynamics for

Li-Ion cells. The input parameter is the load iapp,

the state-status variables are qs,p, qb,p, qb,n, qs,n,

V ′o , V ′n,p, V ′n,n and the output of the model is the

estimated cell voltage V .

It should be noted that the discharge model is

fitted with battery-specific parameters to reflect

its discharge dynamics. However, as the battery

degrades with the applied current and other age-

acceleration factors, e.g., the discharge dynamics

change and the ageing rate should be integrated

to model the ageing of the battery. This work

presents a data-driven parameterization of the dis-

charge model through an error correction configu-

ration.

2.2. Feature Processing

The dataset consists of three variables: the load

current of the drone, the estimated voltage derived

from the electrochemical model, and the target

variable representing the difference between the

estimated voltage and the actual voltage recorded

on the drone. Using this base dataset, a set of

features are extracted which may help in the er-

ror prediction. These features, should be able to

capture the dynamics which are not captured by

the physics-based approach and use them to train

the error prediction model.

Feature extraction is performed using a rolling

window of length M (M=100 in this case) for

the available variables. Namely, the following fea-

tures are extracted: mean, maximum, minimum,

kurtosis, crest factor, form factor, impulse factor,

integrative and derivative of the original signal.

The set of features are then evaluated for their

value for improving the error-prediction accuracy.

This is done in this case through the intrinsic

importance functions of the implemented machine

learning models defined in Section 2.3. The re-

sulting variables with the highest predictive infor-

mation are used in the testing set for validation

purposes.

2.3. Data-driven prediction modelling

For the error-prediction modelling of the physics-

based approach, different machine-learning (ML)

models have been trained and tested.

Random Forests (RF) regression is an ensem-

ble of recursive trees Breiman (2001). Each tree

is generated from a bootstrapped sample, and a

random subset of descriptors is used at the branch-

ing of each node in the tree. RF creates a large

number of trees by repeatedly resampling training

data and averaging differences through voting. RF

is a valuable option for capturing the intricate

relationships between the statistical features ex-

tracted in the Section 2.2 due to its effectiveness

in capturing complex relationships and handling



1865Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

nonlinearities.

Gradient Boosting (GB) Regression is a method

that sequentially combines an ensemble of deci-

sion trees as a weighted sum that can be expressed

as Friedman (2001):

ŷ =

N∑
n=1

cnfn(x) (11)

where N is the number of stages, ŷ is the pre-

diction variable, each fn(x) is a regression tree

or forest, which represent the steps to the final

solution, with weight cn, being x the set of values.

Thus, it places a higher emphasis on data points

that were previously misclassified, leading to im-

proved prediction accuracy. Therefore, given its

robust predictive performance, gradient boosting

proves to be a well-suited choice for the proposed

approach Friedman (2001).

Quantile Gradient Boosting (QGB) are based

on boosting methods that sequentially combine an

ensemble of weak learners as a weighted sum of

base-learner models to reduce the ensemble error

Friedman (2001):

ŷt = FN (xt) + εt =
N∑

n=1

fn(xt) + εt (12)

where FN (xt) is the ensemble of N regression

trees, each fn(xt) is a regression tree and εt is

an error term. The new regression tree fn+1(xt)

for the pinball loss function L(.) is estimated as

follows:

argmin
fn+1

∑
t

L(yt, FN (xt) + fn+1(xt)) (13)

This optimization is solved through the steepest

descent algorithm Friedman (2001), where each

fn(xt) is designed to be maximally correlated

FN (xt). The implementation of the pinball loss

function (Eqs. 14) enables the probabilistic pre-

diction Verbois et al. (2018).

Lq,t(yt, ŷ
q
t ) =

{
(1− q)(ŷq

t − yt) ŷq
t ≥ yt

q(yt − ŷq
t ) ŷq

t < yt

(14)

where q denotes the targeted quantile and ŷq
t and

yt denote the estimated q-th quantile and the true

label at time t, respectively.

The pinball loss function is asymmetric, pe-

nalizing underestimation and overestimation dif-

ferently. The hyperparameter q in QGB deter-

mines the quantile level where lower q values em-

phasize higher quantiles (overestimation), while

higher values emphasize lower quantiles (under-

estimation). By minimizing the pinball loss dur-

ing training, the model learns to estimate desired

quantiles, capturing the variability and uncertainty

associated with different levels. This allows for a

comprehensive understanding of the voltage dis-

tribution during battery discharge.

These algorithms were chosen for their abil-

ity to handle complex nonlinear relationships and

provide robust predictions. The RF provides a

diverse set of decision trees, while GB and QGB

improve prediction accuracy through sequential

model building. The main objective of this re-

search study is the evaluation of the performance

of these algorithms to estimate their effectiveness

for battery discharge voltage prediction.

3. Case Study

The proposed approach is tested on offshore in-

spection drones as show in Fig. 2.

Fig. 2.: Inspection drone example.

These drones are used for the inspection of

defects in offshore wind turbines, e.g. cracks,

which are processed through on-boarding process-

ing software. The drones are equipped with Li-Po

batteries, and the focus of this research is on a 6S,

30000 mAh, Li-Po battery.
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For each flight, different variables are captured

from the drone including the loading, and for

some specific drones, the discharge voltage. There

are other external variables that also affect the

discharge process, such as ambient temperature or

pressure. However, the focus of this paper is on

the use of the loading variable to get an accurate

estimate of the SOC.

Fig. 3 shows an example of the variables that

are available for each flight.

Fig. 3.: Available datasets for the flight #100.

The model validation strategy is focused on

one-leave-out strategy. That is, if F flight informa-

tion is available, then the error prediction model is

trained on F − 1 flight data and tested on the re-

served flight information. This process is repeated

to test the performance on different flights.

The overall dataset consists of 2,626 data sam-

ples obtained from six distinct flights. The length

of each flight determines the proportion of sam-

ples that are used for validation. Accordingly,

Table 1 displays the percentage of flight samples

with respect to the overall dataset, which is used

to validate the results for each flight.

4. Results

Fig. 4 shows the error prediction estimate for an

individual flight using different data-driven error-

correction techniques.

It can be observed that all the hybrid predic-

tion models track the voltage discharge dynamics

correctly. It can be observed that the QGB model

integrates probabilistic estimates of the error and

these are propagated to model the error under

uncertainty.

Fig. 4.: Testing set results on an inspection-drone

flight #100.

In the same direction, Fig. 5 shows the cor-

rected voltage estimate for different models,

which is effectively obtained by adding the

physics-based voltage estimations with the error

correction estimates shown in Fig. 4.

Fig. 5.: Testing set results on an inspection-drone

flight #100.

Finally, Table 1 displays the mean average er-

ror (MAE) performance metrics for the different

models in different configurations.

The table includes the flight number (flight), the

length of the testing set (samples %), and MAE re-
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Table 1.: MAE performance results on various flights.

Flight
(#)

Samples
(%)

Physics-
Based RF GB QGB

(median)
QGB

(q=0.05)
QGB

(q=0.95)
100 16.3 0.35 0.035 0.03 0.034 0.061 0.064

119 15.5 0.42 0.086 0.092 0.084 0.014 0.06

87 25.1 0.43 0.061 0.062 0.064 0.08 0.059

53 41.5 0.42 0.082 0.082 0.08 0.069 0.097

51 0.9 0.025 0.015 0.019 0.022 0.01 0.088

50 0.6 0.01 0.01 0.011 0.013 0.029 0.053

sults for the physics-based model (physics-based),

and for different hybrid configurations with dif-

ferent error-correction prediction models includ-

ing RF, GB and QGB with median, 5th quantile

(q=0.05) and 95th quantile (q=0.95) estimates.

From Table 1 it can be observed that the hy-

brid error-correction configuration effectively im-

proves the voltage prediction error for all the dif-

ferent flights. Among the tested error-correction

models best results have been obtained with the

RF correction model.

However, it should be noted that the QGB

model propagates model uncertainties, and this is

a crucial factor for decision-making in uncertain

environments, i.e. autonomous inspections.

5. Discussion

This research is part of an ongoing project. The

results are promising, but there are different parts

that need to be further developed and tested.

The proposed approach is adaptable to different

types of batteries and drones. Namely, the main

ability of the proposed approach is the correction

of battery discharge estimation errors through a

data-driven approach. This may be useful for dif-

ferent scenarios to correct diverse battery param-

eter errors, such as calibration errors for physics-

based battery model parameters, battery degrada-

tion effects or the influence of the electrolyte type

and electrode material.

The feature selection process has been done

based on the importance function of the used ML

methods. This is very dependent on the length of

the adopted rolling window for feature extraction

(N=100 in this work). This is a hypothesis which

needs to be validated with an extensive sensitivity

assessment.

The model proposed in this work has been

tested on a limited number of flights. This will be

extended and tested on additional flights, which

are likely to be influenced by additional envi-

ronmental factors, e.g. ambient temperature, wind

speed, which affect the performance of the battery

and drone.

The interest of this research is on uncertain

conditions, in which the estimation of the data-

driven prediction model is able to inform about the

performed prediction. In this direction, this work

has tested QGB method, but this is an area which

requires further work, testing and calibration so as

to generate informative predictions under uncer-

tainty.

Finally, this transition will also require to use

proper error quantification metrics for probabilis-

tic error measurement and calibration, i.e. Contin-

uously Ranked Probability Score.

6. Conclusions

This research has presented a drone battery

health assessment approach based on physics-

based models and data-driven error prediction

methods. Both methods have been integrated in

a hybrid error-correction configuration. Results

have shown a good battery discharge prediction

accuracy tested on different flights of the inspec-

tion drone.

This is a practical solution to integrate the ef-

fect of ageing on batteries. That is, as the bat-

teries degrade, the physics-based model param-

eters become outdated and they require a re-

calibration. The proposed framework integrates

this calibration naturally, through the adjustment
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of the physics-based model with data-driven error

correction models.
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