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The risk of a failed test (type-II statistical error) is rarely considered in both End of Life and Success Run Tests 
(Zero Failure Tests) in terms of reliability demonstration testing. In order to make the right decision under 
uncertainty, the remaining risk can be calculated for the considered sample size using numerical or approximative-
analytical approaches. As with any other hypothesis test, prior knowledge is necessary to estimate the distribution 
of the alternative hypothesis. If this prior knowledge is stemming from life tests with very small sample sizes, the 
information is subjected to uncertainty, that has to be considered when planning the test. This paper presents an 
approach to consider the uncertainty in reliability demonstration test planning within a numerical-bootstrap and an 
approximative-analytical approach. The implications are illustrated using some exemplary results. 
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1. Introduction 
One of the main development requirements for a 
product is to demonstrate its service life with 
correspondingly high reliability (Bertsche 2023). 
Frequent and premature failures, especially in the 
case of new products, can cause companies not 
only considerable economic damage, but also 
damage to their image. Particularly with new and 
increasingly complex products, reliability is 
becoming more and more important. Reliability 
tests are usually used to demonstrate a required 
reliability. However, there are some challenges in 
planning these tests, especially with regard to 
resource efficiency. This is because lifetime tests 
on a prototype basis are generally always 
associated with increased expense.  
The central metric in the life test planning context 
is the Probability of Test Success Pts, which can 
be used to determine the statistical power of the 
reliability test based on prior knowledge of the 
product's failure behavior. Its basic applicability 
has already been demonstrated in (Dazer, 2020), 
(Grundler 2022). Pts has also already been 
successfully applied to accelerated life testing 
(Herzig 2020) and to system and component 
testing (Grundler 2020). In addition to calculate 
the necessary number of samples for reliability 
demonstration, it can also be used to compare the 

available test strategies. Thus, the best possible 
test strategy can be selected for individual 
scenarios. 

2. Challenge: Uncertainty in Prior Knowledge 
Due to the stochastic lifetime, the planning of life 
tests always requires prior knowledge about the 
failure behavior. Therefore, the quality of the prior 
knowledge is crucial for a good planning result. 
The prior knowledge can stem from different 
sources such as early prototype tests, similar 
applications, expert knowledge or lifetime 
calculations (Grundler 2019). 
Each source of information contains uncertainty. In 
principle, uncertainty can be divided into an 
aleatory and an epistemic part. The aleatory 
uncertainty can be described easily via a Weibull 
distribution. Even from expert estimates, 
reasonable assumptions for a Weibull distribution 
can be made with a lot of product experience. 
Although there have been some studies for specific 
applications (Grundler 2021), the consideration of 
the epistemic uncertainty of the prior knowledge in 
the planning process has not been successfully 
implemented so far. Accordingly, this paper 
presents two approaches to consider the epistemic 
uncertainty in the reliability test planning process 
for reliability demonstration. Consideration of 
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prior knowledge uncertainty is essential, especially 
for sources with high uncertainty, since in such 
cases the planning process should also be 
approached much more critically. 

3. State of the Art of Calculating Pts 
In order to be able to explain the calculation steps 
for the integration and thus for the consideration 
of the epistemic uncertainty in the prior 
knowledge, a basic understanding of the current 
calculations is necessary. In principle, life tests 
can be divided into failure-free and failure-based 
test strategies. For both representative’s own 
calculation approaches for the planning of 
reliability demonstration tests exist. 

3.1. Pts for End-of-Life Tests 
For the End-of-life (EoL) test, the calculation of 
the Pts is based on a general hypothesis testing 
idea (Grundler 2022). For the non-normally 
distributed life data, the probability must be 
calculated for the relevant lifetime quantile 
(usually derived from the reliability requirement), 
with which the test can provide reliability 
demonstration. This probability corresponds to 
the statistical power in the general context of 
testing methodology. Dazer, Grundler and Herzig 
referred to it in the context of reliability 
demonstration tests as the Probability of Test 
Success Pts (Dazer 2020, Grundler 2020, Herzig 
2020). Fig. 1 shows all the necessary 
relationships. 
The two relevant hypotheses for reliability 
demonstration using an EoL test are: 

 (1) 
 (2) 

The test statistic  used here is the difference of 
the estimated lifetime at required reliability  
to the required lifetime, hence . 
To calculate the Pts, the distributions of the null 
hypothesis  and of the alternative hypothesis 

 must be calculated. The Pts can then be 
determined using the integral: 

 (3) 

The distributions can be described in a numerical 
way or in an analytical-approximative way. While 

 is calculated using the required Confidence  and 
 

Fig. 1. Relationships of &  and the resulting 
integrals of C and Pts (Grundler 2022) 

3.1.1. Numerical Bootstrap Procedure 
To plan EoL tests, the first step of the bootstrap 
approach is to generate n pseudo-random 
numbers from the failure distribution  of 
prior knowledge. The sample size and the pattern 
(e.g. censoring) according to which these failure 
times are generated must correspond to the 
reliability demonstration test that is to be planned. 
The failure distribution  of this bootstrap-
sample is estimated using MLE. Afterwards the 
lifetime at the required reliability  is 
calculated using . Since the failure 
distribution of the prior knowledge is linked to the 
alternative hypothesis , a value of the test 
statistic under validity of the alternative 
hypothesis  can be obtained by subtracting the 
required lifetime from this calculated lifetime: 

 
(4) 

Values of the test statistic under validity of the 
null hypothesis  can be calculated in a similar 
way. But, the failure distribution used must 
correspond to  (reliability requirement). For 
this purpose, the bootstrap failure times already 
generated are multiplied by  so that the 
limiting case  is reached. This 
multiplicative transformation ensures that the 
shape of the failure distribution  is preserved. 
Here,  describes the relationship between the 
requirement and the real product reliability 
(lifetime safety factor), which is approximated as 
best as possible by prior knowledge. Therefore, 
for the transformed distribution, the lifetime 
quantile for required reliability for that limiting 
case is . The test statistic under validity 
of  is then obtained as: 
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(5) 

Using multiple bootstrap iterations, the 
distribution of the test statistic under validity of 
both hypotheses can be described either 
empirically or parametrically using the generated 
values of test statistics. A more detailed 
explanation of the procedure can be found in 
(Grundler 2022). 

3.1.2. Approximative-analytical approach 
The motivation for the analytical-approximative 
method is to find a fast-computable solution, 
because the bootstrap approach can be associated 
with a very high computation time, especially for 
a large parameter space. Therefore, the central 
limit theorem is used to approximate the 
distributions of  and . Accordingly, for 
finite sample sizes, the normal distribution can be 
used as an approximation to the distribution of the 
test statistic. According to the central limit 
theorem, the distribution of the sample quantile of 
a known distribution , i.e. the empirically 
formed quantile, is normally distributed with the 
parameters (Fisher 1915): 

 (6) 

 (7) 

where the q-quantile of the distribution  is 
formed from its inverse function .  is 
the density function of  and n is the sample 
size. Using the test statistic from Eq. 4 and the 
asymptotic behaviour from Eq. 6 & 7, the 
approximate distributions of  and  can be 
determined as normal distributions as follows 
(Grundler 2022): 

 (8) 

 (9) 

is the transformed distribution from prior 
knowledge according to . If prior knowledge is 
formulated using a Weibull distribution with scale 
parameter one can calculate the transformed 
scale parameter as follows: 

 (10) 

The Pts can then be determined via the 
approximated normal distribution : 

  

(11) 

Here, the lifetime quantile is determined as an 
empirical sample quantile.  
Due to the multiplicative correlation between the 
failure times of  and  using , this 
relationship is also valid for the corresponding life 
quantiles and therefore also for the relationship 
between the alternative distribution and null 
distribution. For this reason, there is the following 
relationship of the standard deviations of the 
alternative and null distribution: 

  (12) 

Here, it is assumed that no estimation of the 
failure distribution takes place, i.e. via an MLE. 
This also means that censoring can only be 
considered to a very limited extent. To overcome 
this additional drawback, the scale and variance 
of the lifetime quantile can also be calculated 
using the asymptotic properties of the MLE and 
the variance-covariance matrix. For the complete 
derivation, we refer to (Grundler, 2022). 
The scale and variance of the test statistic 
distribution of the alternative hypothesis is 
obtained using the Weibull distribution 
(Grundler, 2022): 

 (13) 

with: 

  

(14) 

 and  are the Weibull scale and shape 
parameter stemming from prior knowledge 
considering the assumed failure behavior of . 
The transformation using  applied in the 
bootstrap approach can also be used here to 
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calculate the null hypothesis. The Pts then results 
in: 

  
(15) 

For accuracy and comparisons of the calculation 
methods, we refer to (Grundler 2022). 

3.2. Pts for Success Run Tests 
The Success Run (SR) Test is based on a binary 
classification in which all specimens are tested up 
to a predefined lifetime. Each specimen is simply 
assigned as "failed" or "passed". Therefore, the 
binomial distribution can be used as a planning 
approach: 

 (16) 

This corresponds to the null hypothesis for the 
limiting case of . In analogy to Eq. 16, the 
Pts of a SR Test can be calculated analytically and 
exactly using the following binomial distribution: 

 (17) 

Instead of the required reliability, the reliability at 
the required lifetime corresponding to the 
prior knowledge  is used 
here as the complement of the success probability 
parameter  of the binomial distribution. 
If the reliability according to prior knowledge is 
greater than or equal to the requirement 

, this corresponds to the 
alternative hypothesis. Due to the relationship 
between the binomial and beta distributions, Eq. 
16 & 17 can also be written as beta distributions: 

 (18) 

 (19) 

It is the same beta distribution in 
both cases, because the resulting reliability 
distribution is defined solely by the number of 
passed and failed specimens. 
Since Confidence and  are calculated from the 
same distribution they only differ in the integral 
limits. It is obvious that the  becomes the 
complement of the required Confidence i.e., 

when the required reliability approaches 
the actual reliability, i.e. for  and 

, respectively. The relationship of Pts and 
Confidence is shown in Figure 2. 

 
Fig. 2. Beta distribution of the SR test and the 
corresponding integrals for C and Pts (Grundler 2022) 

4. Consideration of Uncertainty in Prior 
Knowledge in the Pts calculation procedure 

The information about failure times is usually 
coming from one or more observations. Due to the 
always limited amount of observations, the 
information is subject to epistemic uncertainty. 
Thus, the prior knowledge about the reliability 
and the failure distribution in particular are also 
subject to uncertainty. In order to be able to 
consider these in the considerations of the 
reliability demonstration planning the following 
methods and procedures are presented and the 
calculation of the Pts is introduced. 

4.2. Uncertainty in Prior Knowledge 
The reliability is the aleatoric uncertainty of the 
product’s lifetime. The lifetime is varying from 
product to product and is therefore described by a 
probability. The estimation of the actual 
underlying probability of the lifetime can only be 
made inadequately, i.e., not exactly due to the 
sample error. This inadequacy of observation is 
called epistemic uncertainty. 
Prior knowledge in the context of reliability 
corresponds to information about the reliability 
itself (type SR test: reliability distribution) or 
information about the failure distribution (type 
EoL test: failure distribution or entire sample). 
Thus, it is the aleatory uncertainty - the 
uncertainty about the failure times, or reliability. 
The uncertainty about the correct determination 
of reliability (epistemic uncertainty) must be 
additionally considered in the test planning 
process, because prior knowledge is always 
subject to epistemic uncertainty. 
The two types of prior knowledge in certain (fixed 
values) and uncertain form are shown in Figure 3. 
Thus, the epistemic uncertainty in prior 
knowledge can be determined by specifying the 
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reliability distribution, for example, by a beta 
distribution for a SR Test. The uncertainty in prior 
knowledge within an EOL test can be determined, 
e.g., by the original sample size of the failure 
distribution (Grundler 2022). 

 
Fig. 3. Types of prior knowledge in its certain (fixed 
values) and uncertain form 

4.2. Calculation of Pts with Uncertainty in 
Prior Knowledge 
In order to calculate the Pts, the epistemic uncertainty 
of prior knowledge must be captured, i.e., the 
variance of reliability (prior knowledge SR Test) or 
the variance of the parameters of the failure 
distribution (prior knowledge EoL Test). 

4.2.1 Calculation of Pts with Uncertainty for EoL 
Tests 
Prerequisite for the calculation of Pts in EoL Tests is 
prior knowledge of the type EoL Test. That is a 
failure distribution with specification of the original 
sample size or the specification of the original 
sample in the form of failure and suspension times 
itself. The procedure is formulated for the two-
parameter Weibull distribution. However, the 
procedure can also be applied to other distributions. 
In order to determine the variance of the parameters 
of the failure distribution, the existing procedure is 
extended to a double bootstrap approach. Here, in a 
first step, a bootstrap sample of the size of prior 
knowledge  is generated from the failure 
distribution. This can be done parametrically or non-
parametrically. This sample is then used to 
determine the parameters of the failure distribution, 
which in turn are used again to generate another 
bootstrap sample of size  and censoring of the test 
to be planned and evaluated. By this double 
procedure, both sample sizes (  and ) are 
considered and the corresponding variance and 
uncertainty of these combined sample sizes can be 
captured. Further computation is performed as in the 
case of certain prior knowledge. The extended flow 

chart for this procedure is shown in Figure 4. Due to 
the bootstrap procedure applied twice here, the 
number of iterations must be chosen higher than in 
the simple case without uncertainty in prior 
knowledge. 

 
Fig. 4. Flowchart to calculate Pts with consideration of 
uncertainty in prior knowledge 

The methods described in the analytical-
approximative approach use the asymptotic 
distribution of the lifetime quantile to calculate the 
Pts in an analytical way (Grundler 2022). Here, the 
asymptotic standard deviations and  are 
determined under the validity of the two hypotheses 
using the Central Limit Theorem and a Taylor series 
approximation. The distributions of the lifetime 
quantiles are then obtained as normal distributions. 
The scale parameters  and  of these 
distributions are predetermined via prior knowledge, 
because they are specified by the defined hypotheses 
and are independent of the Central Limit Theorem 
considerations and the sample size. However, 
because of the uncertainty in prior knowledge, it is 
not possible to further specify a single value for the 
parameters of the failure distribution, which means 
that the scale of the lifetime quantile is also subjected 
to variance. However, with the same approach, this 
variance can also be determined as a normal 
distribution via the Central Limit Theorem and 
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Taylor series approximation. For this purpose, only 
the sample size  on which the prior knowledge 
was based, has to be used. Thus, the normal 
distribution of the scale of the lifetime quantile under 
validity of the alternative hypothesis  results as: 

 (20) 
However, it is important to note that the variance in 
this equation is determined by means of the synthetic 
failure times corresponding to , instead of . The 
relationships between the likelihood, its derivatives 
and the variances and covariances are still valid, see 
(Grundler 2022). 
The scale parameter of the asymptotic distribution of 
the scale of the lifetime quantile is identical with the 
scale of the lifetime quantile in case no uncertainty 
would be considered. Using the transformation of 
Eq. 10, the normal distribution of the scale of the 
lifetime quantile for the validity of H0 results in: 

  (21) 

with:  

  (22) 

In such a case, when the scale parameter of a normal 
distribution is again normally distributed, it is also 
called a mixture distribution and the resulting 
distribution is a normal distribution again (Gneiting 
1997). The scale parameter of the resulting 
distribution corresponds to that of the distribution 
which describes the scattering scale parameter. The 
variances are summed up, which means that the 
resulting standard deviation is the geometric sum 
of the standard deviations of the two distributions. 
Thus, the asymptotic normal distribution of the 
lifetime quantile under the validity of H1 with 
consideration of the uncertainty of the prior 
knowledge is determined as follows: 

 
(23) 

Accordingly, the following distribution applies 
analogously to the validity of the null hypothesis: 

 (24) 
with: 

 

(25) 

Finally, Pts resulting in: 

  
(26) 

Based on the equations presented, it can be seen that 
the Pts of EoL tests while considering the uncertainty 
in prior knowledge can reach at most the value that 
the sample size of the prior knowledge is reaching in 
a calculation without uncertainty. This is due to the 
summation of the variances. The variance of the 
lifetime quantile can therefore never be smaller than 
the variance that results from the sample size of the 
prior knowledge alone. For practical purposes, this 
means, that the values of Pts will always be smaller 
if the uncertainty in the prior knowledge is 
considered. Furthermore, a sample size larger than 
that of the prior knowledge  would not lead 
to an increase in the Pts.  

4.2.2 Calculation of Pts with Uncertainty for 
Success Run Tests 
If the uncertainty in the prior knowledge is to be 
considered for SR Test, the prior knowledge must 
first be translated into a suitable form if necessary. If 
the prior knowledge is available in the form of a beta 
distribution, it can be used directly. 
The approach to calculate the Pts from Eq. 17 using 
the binomial distribution cannot be further used 
here, because the parameter of the success 
probability, which in this context is the probability 
of failure, is not further a single value, but scatters 
according to the beta distribution of prior 
knowledge. However, this corresponds exactly to 
the information given by the beta-binomial 
distribution. Accordingly, the Pts with prior 
knowledge can be calculated as a beta distribution as 
follows to account for the uncertainty in the prior 
knowledge (Grundler 2022): 

 (27) 

The beta distribution with the parameters  and  is 
describing the reliability distribution for the required 
service life. In the planned SR Test with sample size 

 a maximum of  failures are allowed. 

4.3 Influence of Uncertainty in Prior 
Knowledge 
The calculation of the Pts considering the 
uncertainty in prior knowledge holds potential, 
because on the one hand one can calculate Pts 
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more realistically and on the other hand one can 
assess the quality of the available prior knowledge 
indirectly. 

4.3.1 Comparison of calculation approaches for 
EoL tests 
In order to get a general understanding of the two 
calculation approaches for EoL tests, they are 
compared for a Weibull distributed failure 
behaviour with  and .5. For a 
reliability requirement of , 

 and , the values of  are shown 
in Figure 5 with regard to the sample size of the 
test  als well as the sample size  on which the 
prior knowledge about the failure distribution is 
based on. 
It is obvious, that the analytical approach results 
in a symmetric surface to the  and  axes. 
Which means the two sample sizes have equal 
impact on the  values and the sample size of 
prior knowledge concerning its uncertainty , is 
restricting the maximum achievable values of . 
This is in contrast to the values calculated using 
the bootstrap approach. Here an increase in 
sample size of the EoL test  results in an increase 
in . This is in contradiction with the 
observations on the superposition of the standard 
deviations of the lifetime quantile and its location 
parameter, see Eq. 25. This behavior can be 
explained by the bias of the MLE estimate with 
respect to the Weibull shape parameter b (see e.g. 
(Tevetoglu 2020)). For small sample sizes , the 
shape parameter is slightly overestimated in the 
first bootstrap step. 
This results in the fact that in the second bootstrap 
step, when generating the bootstrap sample of size 

, the failure times are less scattered than required 
to correctly represent the uncertainty. The 
Weibull parameters thereby re-estimated are then 
overestimated again for small . Thus, this double 
bootstrap approach amplifies the overestimation 
of the shape parameter due to the bias of the MLE. 
Consequently, the variance of the lifetime 
quantile is too small under the validity of both 
hypotheses, which in turn results in increased 
values of . In practical applications, an 
estimator that is as free of bias as possible should 
be used at least for estimating the uncertainty with 
the sample size  in the first step of the bootstrap 
approach. However, the analytical approach does 
not show such shortcomings. 

 

 
Fig. 5. Pts of EoL test when considering uncertainty of 
prior knowledge; analytical (top), bootstrap (bottom). 

4.3.2 Influence of Uncertainty on EoL Tests 
Generally, the Pts decreases when the uncertainty 
is considered in EoL tests, because the lifetime 
quantiles have a higher variance. Compared to the 
calculation without considering the uncertainty, a 
strong reduction takes place. The values of the Pts 
considering the prior knowledge are limited by a 
maximum value, based on the sample size (or 
generally the uncertainty) of prior knowledge. For 
practical application this means that the 
uncertainty should be considered. However, this 
calculation should always be made together with 
a calculation without taking the uncertainty into 
account, because the result of this calculation then 
represents the maximum achievable Pts. 

4.3.3 Influence of Uncertainty on SR Tests 
In contrast to the EoL test, there is no general 
tendency for the SR test to decrease or increase 
the Pts due to the consideration of uncertainty in 
prior knowledge. In Figure 6 it can be seen that 
for very large values of Pts there is a decrease, 
whereas for small values of Pts there is an 
increase. This can be explained by the increased 
variance of the reliability, which is described by 
the beta distribution of the prior knowledge. With 
already very large reliabilities, smaller 
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reliabilities will occur more often than larger ones 
due to the larger variance, relative to the reference 
value that would be used to calculate the Pts 
without uncertainty. This is because if the values 
of the reliability already are close to the maximum 
value of 1, the probability that there are even 
larger values is small.  

 
Fig. 6. Pts of SR Test when considering uncertainty of 
prior knowledge with &  &  

Exactly the opposing behavior is evident for small 
values of the Pts – here, the values increase when 
the uncertainty is considered. This is also due to 
the fact that the probability of obtaining even 
smaller values of reliability decreases the closer 
the values get to the minimum value of 0. The 
main difference between the behavior of the Pts 
when considering the uncertainty in the prior 
knowledge for the EoL test and the SR test is thus 
due to the restricted domain of the reliability 
itself. It is restricted to the interval R  [0, 1], 
whereas the quantity relevant in the calculation of 
Pts for EoL tests, the test statistic  has no such 
restriction. Solely the restriction of strictly 
positive lifetimes prevails here. However, this 
does not limit the behavior of the Pts significantly. 
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