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As one of the key subsystems of space equipment, the main task of space power supply system is to ensure that it 
can provide continuous and stable electric energy during orbital operation as well as the bus regulation function of 
power supply system. For the space power supply control system represented by the S4R type, this paper proposes 
a dynamic analysis model of network cascade fault based on multiple charge-discharge adjustment tests which on 
the basis of using complex network theory to evaluate the structural reliability of the main error amplification system. 
Furthermore, it models the actual operation characteristics such as photovoltaic conversion and power regulation in 
the dynamic analysis of cascading faults, and analyzes the impact of the real-time change process on the overall 
reliability of the system.  In this research, the regulation problem of the space power supply system is modeled as a 
Markov decision process model, and a power regulation algorithm based on deep reinforcement learning is further 
proposed to achieve intelligent monitoring and diagnosis of power supply network faults through different ways of 
bus regulation and filtering technology, so as to reduce the overall cascading fault risk of the space power supply 
distribution and supply network,   while maintaining a reasonable utilization rate of stored power. 
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1. Introduction 
With the continuous development of space 
technology, spacecraft operations in space 
become more and more abundant. The outbreak 
of in-orbit service demand has promoted the 
development of docking technology, space debris 
cleaning mission to promote the birth of new tasks 
such as acquisition technology. Wang et al. 
(2021). Therefore, the space power system 

involved has become increasingly large, and its 
control system has become more complex. A 
performance of the proposed control strategy in 
both charging and discharging modes of the 
Battery Energy Storage Systems operating in the 
grid-connected mode is evaluated. Khajesalehi et 
al. (2015). A control architecture for autonomous 
operation of spacecraft power system is proposed, 
which is partially realized by a highly distributed 
software agent network. May and Loparo (2014). 
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Concepts for new power systems are being 
proposed. Okaya (2015). Researcher investigates 
and compares the performance of BESS models 
with different depths of detail. Farrokhabadi et al. 
(2017). The grid-connection and power control 
schemes of spacecraft design are constantly 
updated and proposed. Zhong et al. (2020). At 
present, real-time smart grid dispatching 
operation has realized the organic integration of 
power transmission network and signal 
transmission network in operation and function. 
Jin et al. (2018), and greatly increases the space 
of real-time dispatching control of power supply 
network. Rosato et al. (2008). Therefore, the 
design of an adaptive power control grid-
connection algorithm can maximize the power 
utilization rate of the whole space power system. 

Since traditional reinforcement learning 
algorithms could not process large continuous 
action state Spaces, Riedmiller first used a 
multilayer perceptron to approximate Q-value 
functions, and proposed a Neural Fitted Q 
Iteration algorithm. Riedmiller (2005). Lange 
proposed a Deep Auto-Encoder (DAE) model by 
combining DL model and RL method Lange and 
Riedmiller (2010). As a subset of machine 
learning, deep reinforcement learning combines 
the advantages of both deep learning and 
reinforcement learning to provide solutions to 
perception and decision problems of complex 
systems. 

The interpretability of deep learning refers to the 
term or explanation that can be provided or briefly 
provided for people to understand in the 
application process of black box models such as 
deep learning. Meng et al. (2020), and some 
researchers interpret results by analyzing variable 
importance weights to identify significant 
features and self-attention weights to reveal 
persistent temporal patterns. A large number of 
scholars have divided the research methods on the 
interpretability of deep learning into post-
interpretation method Kong et al. (2021), the 
internal explanatory power method of attention 

weight, and the trainable explainable deep 
learning model according to the pre- Ji et al. 
(2019), mid-Zhou et al. (2021) and post-Beven 
(2020) interpretation implementation in the 
modeling process.  

In this paper, the grid-connected space power 
system of a certain spacecraft is taken as an 
example to conduct topology modeling for the 
grid-connected mediation scheme generated by 
solar cell components to overcome shadow 
effects during its in-orbit work. The 
Asynchronous Advantage Actor-Critic (A3C) 
parallel deep learning framework is used to 
conduct adaptive algorithm training for the 
topological network of power transmission and 
electrical signal communication, and the 
participation of the neural network in the 
decision-making process is interpretable. 

2. Topology modeling of space power 
communication network 

Solar array usually contains multiple cells in series 
to achieve a higher busbar voltage. Not only the 
cell in shadow lack of power generation capacity, 
but also will be affected by thermal effect. When a 
cell is completely sheltered, it will lose all 
photovoltaic properties, while current from the 
other working cells will still flow through it, what 
makes this battery itself does not generate voltage 
and cannot output power, and becomes a load and 
generates the heat consumption as I2R. The rest of 
the current in the battery string must generate 
higher voltage to compensate for the voltage loss 
caused by the blocked battery. Goldsmith (2023). 
In this case, when the shadow moves on the solar 
cell surface, power control unit (PCU) must cut off 
or connect the corresponding power module group 
in time, waiting for the opportunity to serve to 
ensure the maximum energy utilization rate and the 
expression of spacecraft system power generation 
is as Eq. (1) 
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Among them, A is the area of solar array, S is the 
solar constant, η1 is the average conversion 
efficiency of solar cells, Fm is the coefficient of 
canvas cloth, Fa is the end-of-life attenuation 
factor, Fs is the combination mismatch factor, T is 
the average working temperature of solar cells in 
the illumination area, Kpt is the power temperature 
coefficient of solar cells, k is the shielding rate of 
solar array, z is the comprehensive effect factor of 
the influence of solar array shielding on power 
generation, θ is the solar incident angle, q is the 
Kelly cosine. 

Obviously, the above formula does not take into 
account the movement of shadows on the solar 
cell surface, and the grid-connected design 
scheme it guides has no specific response to this 
behavior. The power system of the space station 
adopts the overall scheme of multi-bus, multi-unit 
and multi-module grid-connected. In the state of 
the rail assembly, the grid-connected controller 
can be used to conduct grid-connected power 
allocation between the bus bars, so as to satisfy 
the safe and reliable power supply. Ma et al. 
(2021) . The specific structure is shown in Figure 
1 and the grid-connection process of space power 
system is shown in Figure 2.
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Fig. 1. Shunt regulation process of solar cell. 
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Fig. 2. Workflow of grid connected power supply 
system. 
 
The key components such as grid-connected 
controller and PCU are defined as nodes in the 
power & signal network structure. � �,E E EG V E  is 

the power transmission topology, and the signal 
network topology is defined as � �,C C CG V E  . 
According to the different topologies of nodes, 

EV  and CV  are defined as the set of power 
transmission network nodes and signal 
transmission network nodes respectively, and 

EN  and CN  are the summary points of their 
respective networks. The specific definitions are 
shown in Eq.(2)- Eq.(5). 

 � 
,1 ,1 ,, ,
EE E E E NV v v v� 
, EN, E

v  (2) 

 � 
,1 ,1 ,, ,
CC C C C NV v v v� 
, CC N, C

v  (3) 

 � �� 
, , , ,, ,E E i E j E i E j EE v v v v V� �  (4) 

 � �� 
, , , ,, ,C C i C j C i C j CE v v v v V� �  (5) 

At a certain time t, the power control system needs 
to establish a new communication data stream 
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� �, ,, , ,t E s E dreq v v bw H  in the network. The state 

ts � S  can be defined as Eq.(6), where 

� 
,,w b
k k jU U  are the alternative routing allocation 

scheme under the current network, as shown in 
Eq.(7) and Eq.(8). kl  and ,k jl  represent the 

maximum load of the link through which the 
working and switching routes are routed. max

, ,E kH  

and max
,C kH  represent the maximum propagation 

parameters of the power transmission nodes 
coupled across the layers of the communication 
nodes through which the working and switching 
routes are routed. Zhang et al. further proposed 
the concept of propagation parameters under 
different hierarchical conditions by using the 
importance of edge betweenness after 
stratification to quantitatively evaluate the 
participation of each node in a certain propagation 
attribute (Zhang et al. 2022). It is concluded that 
� �e XL �  and � �eXL �  are the edge betweenness 

of node entry and exit respectively, as shown in 
Eq.(9). I and O are the ratio of the in-out degree 
of the node to the total degree of the network, n is 
the number of layers where the node is located, 
and each element in � �1 2, , , i� � �� �η  represents 

the contraction and expansion trend of the number 
of nodes in each layer. 
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3. Adaptive power transmission and signal 
routing optimization algorithm 

The action space A  of working routing and 
switching routing decision is defined as a one-
dimensional vector containing a total of J KN N�  

routing decision actions. � �, ,t k ja t�A  allocates 

the kth alternative working routing and the jth 
alternative switching routing for the current 
application. 

Where � �1 ,a
ss t t tP P s s s s a a� � �� � � � is the 

probability of the power signal network 
transferring to the next state under the 
environmental state s�S . The reward function 
is defined as Eq.(10), which rewards the decision 
after the next route selection action ta  is 

successful. In the formula, � �max
,E DL tH a  is the 

maximum criticality level of the working 
protection dual routing through the 
communication node after the establishment of 
the current data flow routing in the routing action, 

� �max
,E DL CH G  represents the maximum criticality 

of the node in the signal transmission network 
after the establishment of the routing, h represents 
the total hops of the current selected routing, 

� �CDiam G  is the network diameter of the signal 

network, and � , �  are the decision adjustment 
parameter of the routing. 
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 (10) 
The global optimization objective of the adaptive 
protection routing problem for signal 
transmission services is defined as shown in (11). 
While establishing service requests for each 
signal transmission data stream, the long-term 
optimal routing scheme for the load and risk 
balancing requirements of the signal transmission 
network in the subsequent network state 
continues to be sought. 

The , ,t i k ju �  is a Boolean value that indicates 

whether the kth alternative working route and the 
corresponding jth switching route are taken for 
the data flow establishment request, and the 



3342 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

� �, ,t i j ka �R  is an evaluation function for the 

rationality of the routing decision taken for the 
data flow establishment request. Therefore, the 
adaptive switching routing problem of signal 
transmission services studied in this paper is first 
established as a mixed integer linear 
programming form as shown below. The Eq.(11) 
to Eq.(13) are the constraints of the mixed integer 
linear programming optimization problem. 
Eq.(12) is to limit the sum of all established 
routing bandwidths on any communication line to 
no more than its line capacity. , ,

lm
t i k jy �  is the 

number of times that the signal transmission, and

� �, ,,E l E m Ev v E�  is used by the kth alternative 

working route and its corresponding jth switching 
route. Eq.(13) can restrict the establishment of a 
request t ireq R� �  for a given data stream, and its 
working route does not coincide with the link 
used for the switching route. Eq.(14) limits the 
establishment of a request t ireq R� �  for a given 
data stream. 
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To achieving the interpretability of the algorithm 
results and better convergence properties, this 
paper will use the model-free asynchronous 
advantage actor-critic (A3C) training framework. 
When the system needs to establish a new power 
transmission line � �, ,, , ,t E s E dreq v v bw H  in the 

network, the signal exchange process of each step 
is recorded one by one, and the power 

transmission network is extracted to generate the 
state vector ts for the subsequent algorithm. 

Further, the policy neural network (PNN) f
��

is 

called to evaluate the network state, and a routing 
action � �ta t�A  is selected in random routing 

strategy � �;ta s �� � , which is rewarded 

according to the feedback result and returned to 
the algorithm agent. 

For the routing power transmission data at each 
moment, Eq.(15) is the long-term cumulative 
discount reward achieved by the routing 
algorithm by learning the optimal routing strategy, 
where � �0,1� �  is the discount factor, which is 

used to adjust the attention ratio of the agent to the 
current reward and the long-term reward. 

 � � � �1
0

,i
t t i t

i
G a s s a� �

�

� �
�

� � �� R  (15) 

The discounted return iG �  for each chapter is 
shown in Eq.(16) as an estimate of the long-term 
cumulative discounted return in its state. The 
relative advantage of the estimated results of the 
routing action compared to the value neural 
network is calculated by Eq.(17). 

 
-

0

N i
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i i j
j
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4. Interpretability of optimization effect 
A gated recursive unit is used to control the time 
series dependency. Gao et al. (2020). The hidden 
state of the recursive component is shown in Eq.(18) 
- Eq.(21). 

 � �1
R

t t xr t hr rr x W h W b! �� � �  (18) 

 � �1
R
t t xu t hu uu x W h W b! �� � �  (19) 

 � �� �1
R
t t xc t t hc cc RELU x W re h W b�� � �  (20) 
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 � � 11R
t t t th u eh u ec�� � �  (21) 

Where e is the product of elements, !  is sigmoid 
function, tx  is the input of the layer at time t, W  is 
the corresponding weight matrix, b is the bias vector, 
and � �RELU �  is the activation function. 

Knowledge Distillation (KD), as a teacher-
student-based training model, can reduce the 
parameters of the model under the premise of 
ensuring performance. Garbay (2019). The 
specific steps of the process are as Table 1.There 
are a total of five interpretable model 
combinations tested, including the GRU-RS-TA-
AR model that completely includes four 
components, as well as the RS-TA-AR model 
composed of three components, the GRU-TA-AT 
model, the GRU-RS-AR model, and the GRU-
RS-TA model. The calculation formula for the 
degree of impact on the model prediction results 
is: 

 t t

t

V V
Q

V
��

�  (22) 

In the formula, Q represents the impact of 
changing a certain variable on the target value of 
the prediction result, which is a dimensionless 
value; tV  represents the root mean square error 
value calculated from the model prediction result, 
which is the target value of the model prediction 
result; tV �  represents the root mean square error 
value predicted by the model after changing a 
certain variable. Taking the GRU-RS-TA-AR 
model as an example, set the reward threshold γ 

to 0.6 to make statistics on the nodes involved in 
significant rewards or punishments and their 
corresponding long-term cumulative rewards. As 
can be seen from Table 4, if the node 
combinations � 
,33 ,47 ,48 ,79, , ,E E E Ev v v v  and 

� 
,29 ,35,E Ev v  occur twice in succession and trigger 
high rewards and punishments with a relatively 
close interval, the long-term discount rewards 
associated with the node combination are 
retrieved from the remaining model combinations. 
At the same time, the predicted impact degree 
budget shown in Eq.(26) for tG  excluding the 

node is used. Taking � 
,29 ,35,E Ev v  as an example, 
dividing this node group from four Net-S models 
results in the corresponding long-term discount 
reward impact degree are shown in Figure 3. 
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Fig. 3. Reward changes generated by different 
normalized prediction models for removing nodes. 

Table 1. Interpretable deep learning knowledge distillation training process. 

Input : Power transmission topology network state sequence 
1Taking the power transmission routing model as the Net-T model 
2 Take the original state sequence data as a target sequence training set. 
3 The prediction target of complex model training process and training result is obtained by supplementing the 
training set. 
4 Built different Net-S models with four interpretable components. 
5. The supplementary training set and the original time series are used as training samples to train the Net-S 
model. 
6 The error of the supplementary training set is calculated by the loss function, and the weight parameter is 
used to adjust the proportion of each loss function. 
7 Adjust the proportion of each loss function with weight parameters. 
8 Representing the key structure of Net-S model with multi-layer spatial analysis module and feature module. 
9 Using supplementary training sets to train and adjust the parameters of the model to obtain a Net-S model. 
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10 Apply the test set to the Net-S model to predict and compare the results of the Net-T model to calculate the 
loss amount. 

Table 2. Significant transfer reward state statistics under the GRU-RS-TA-AR model. 

Nodes associated with rewards 
,E CV V  

Current 
transfer status 

1t ts s ��  

Reward at current moment 

� � � �1, 0.6ts a "� #R  

Cumulative 
Discount 

Rewards tG  

…… …… …… …… 

� 
,21 ,24 ,29 ,35, , ,E E E Ev v v v  78 0.69 52.31 

� 
,33 ,47 ,48 ,79 ,80, , , ,E E E E Ev v v v v  164 0.62 61.24 

…… …… …… …… 

� 
,33 ,47 ,48 ,49 ,52, , , ,E E E E Ev v v v v  420 -0.8 77.17 

…… …… …… …… 

� 
,29 ,35 ,70 ,79, , ,E E E Ev v v v  633 0.77 124.95 

5. Conclusion 

In this paper, a power transmission and 
communication routing algorithm based on 
asynchronous advantage actor-critic training 
framework of deep reinforcement learning is 
proposed to solve the problem of insufficient 
maneuverability of spacecraft power system 
during grid connection. After analyzing the 
interpretability of the algorithm, the main 
conclusions are drawn as follows: Considering 
the parallel characteristics of power transmission 
and communication dual processes involved in 
the model, the coupling topology network 
modeling of power transmission and signal 
transmission based on hierarchical node 
propagation parameters is completed. Based on 
Markov decision process, the real-time 
optimization and adaptive adjustment of time 
varying signal transmission network are realized 
by online training. Based on the explainable 
model components and knowledge distillation 
algorithm, an explainable deep learning temporal 
prediction model was constructed, and the model 
functions and input variables were further 
quantitatively analyzed, so as to understand the 
key decision basis of the model prediction process, 
and then the interpretation of the complex deep 
learning model was realized. The effect of input 
variable variation on prediction results under 
different model functions is summarized and the 

mechanism explanation of prediction model is 
realized. 
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