
Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Edited byMário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio
©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore.
doi: 10.3850/978-981-18-8071-1_P122-cd

Towards Verification of Self-Healing for Autonomous Vehicles

Timo Frederik Horeis and Rhea C. Rinaldo

Institute for Quality and Reliability Management (IQZ GmbH), Hamburg, Germany.
E-mail: horeis@iqz-wuppertal.de, rhea.rinaldo@iqz-wuppertal.de

In the scientific community, “Organic Computing (OC)” offers a promising approach to designing and developing
highly reliable and cost-efficient systems, one of the main challenges in developing autonomous vehicles. Thereby,
OC proposes the implementation of diverse self*-properties to make the system act self-aware and autonomously
throughout environment and requirement changes. These properties include, a.o., the self-configuration of the
system, self-healing from erroneous and corrupted states, and self-protecting against security attacks carried out
by the system independent from human commands. Regarding the insurance of safety, reliability and security,
mainly self-healing is introducing new possibilities for complex, cost-intense systems. Self-healing systems can
detect, diagnose and repair failures in a self-aware manner, increasing the robustness and operation time without
affording maintenance performed by humans. The emerging benefit lies in enhancing the system’s safety and security
parameters while keeping costs and resources reasonable.
Current research focuses mainly on architectures and functional implementations of self*-properties. However, to
our knowledge, modeling and verification approaches for the properties’ impact still need to be developed. This is
key for OC being accepted beyond the scientific scope. Therefore, this paper performs a literature study on self-
healing and defines its core concept in terms of a generic modeling. This modeling builds the basis for a quantitative
verification of self-healing. To show its effectiveness it is implemented in an existing assessment tool, “ERIS”, and
an example application is presented.

Keywords: Organic Computing, Verification, Self-healing, Self-protecting, Safety, Security.

1. Introduction

In the last decade, the drive towards systems with

a higher level of automation has been drastically

increasing and concomitantly has the constant

growth in the amount and novelty of tasks. This

trend towards higher levels of automation leads to

an increasing complexity and connectivity of the

system. As a consequence, current design tech-

niques are reaching their limits (Tomforde et al.

(2014)). Thus in the future, the application of

classical top-down approaches for the design of

highly-automated vehicles that rely on breaking

down the specification into single elements, mak-

ing knowledge of all system states at all times

mandatory, will no longer be applicable. In or-

der to adjust to the degree of complexity and

connectivity, new design techniques have to be

introduced.

The concept of Organic Computing (OC) offers

a promising solution. OC chases the idea of in-

cluding biological concepts in currently strict and

inflexible technical systems. Thereby, the goal is

to make the technical system automatically, in a

self-aware manner, adapt to new situations and

environments as a reaction to external or internal

events. The system’s adaption possibilities include

both; the system structure (components and con-

nections) and the system behavior realized by im-

plementing different self*-properties, e.g., based

on machine learning techniques. With the system

taking out specific tasks on its own, it does not rely

on design time specifications for these anymore,

and a playground for autonomously finding and

performing problem solutions to fulfill the desired

goal is prepared. This idea leads to a significant

paradigm shift: former design time decisions are

now made at run-time with the decision-making

responsibility being transferred from the engineer

to the system itself (see also Tomforde (2011)). In

addition to a reduced design time, OC properties

can benefit a system in many ways, ranging from

economic and financial reasons to the ones of

functional safety and cybersecurity. Particularly in

the field of safety and cybersecurity in the automo-

334

335Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

tive domain, OC offers an excellent opportunity

to overcome the dilemma of designing afford-

able vehicles with sufficient safety and security

solutions (Güdemann et al., 2006; Horeis et al.,

2022). In this way, OC can be used to achieve

robustness against failures without introducing ad-

ditional components and thus keeping the costs

lower compared to traditional design concepts.

However, while the first ideas of OC and its

initiative date back to the early 2000s (see Müller-

Schloer et al. (2004)), first implementations in the

automotive domain have only been proposed in

the last decade (see e.g. Schleiss et al. (2014)).

One reason is that OC implementations also pose

new challenges to the system’s safety by intro-

ducing new kinds of failures, adding uncertainties,

and possibly increasing the reaction time, as well

as the interest and risk for attacks (Müller-Schloer

et al. (2004)). Further, the applied risk assessment

techniques must be capable of considering these

effects to represent the system accurately. To con-

quer these challenges and ensure the acceptance

of OC implementations in the automotive domain,

modeling and verification techniques capable of

considering self*-properties become mandatory.

Contributions to this are, however, sparse. First,

efforts were made by Ehrig et al. (2010), who

propose a way to model and formalize self-healing

systems by a tool-supported static verification

technique based on graph transformation. Nafz

et al. (2010) are making use of compositional

verification based on rely/guarantee specifications

to verify self-organization and the system’s func-

tional behavior separately. Other approaches are

verifying the results at run-time, e.g., via online

verification like Stahl (2022) or verified result

checking as Fischer et al. (2011). With this paper,

we aim to push this topic further by developing

a modeling technique for self-healing and imple-

menting it in a pre-developed verification tool. We

start off by identifying the main characteristics

of OC, more specifically self-healing, in terms

of a short literature research. Next, a modeling

approach of the identified characteristics is pro-

posed, which is then implemented into a pre-

developed modeling tool and an exemplary analy-

sis is performed. Lastly a conclusion and outlook

of the findings and limitations is given.

2. Organic Computing

Organic Computing (OC) introduces several

self*-properties to a system to make it adapt-

able to new, undefined situations and tasks. To

the best of our knowledge, no unique definition

of the term OC and the accompanying self*-

properties exists. For this paper, we follow the

definitions given by Tomforde et al. (2017),

who list self-configuration, self-organization, self-

integration, self-management, self-healing, self-

protecting, self-stabilizing, self-improving, and

self-explaining. While it is essential to consider all

OC properties of a system in the big picture, for

reasons of space, we focus on self-healing in this

paper. In the subsequent Section 2.1 a definition

of self-healing is given and its characteristics on

different implementation levels is expounded.

2.1. Self-Healing

Self-healing describes the capability of the system

to automatically heal from erroneous states or be-

haviors caused by failures or attacks. It character-

izes by performing repair and recovery actions en-

tirely without human intervention. Failures and at-

tacks can occur on different levels, e.g., hardware

faults v.s. software errors. Consequently, healing

techniques are deployed on different levels, usu-

ally distinguished by system level and component

level (consisting of application level and hardware

level). On hardware level, classical techniques are

based on voter systems such as Dual or Triple

Module Redundancy, but also more revolutionary

techniques such as Evolvable Hardware (EHW)

or Embryonic Hardware (EmHW) are being re-

searched (for more information see Khalil et al.

(2019)).

Regarding software a vast amount of ap-

proaches exist. Monperrus (2018) provides an ex-

haustive overview on automatic repair, categoriz-

ing behavioral and state repair. Behavioral repair

includes, among others, approaches that prevent

software crashes by making the code safer through

automatic patching like Azim et al. (2014); Den-

nis et al. (2006). Classical state repairs comprise

the restart (reboot) of the affected component to

336 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

reclaim stale resources, clean up the corrupted

state and fix Heisenbugsa (see also Candea and

Fox (2001)), the rollback to a previous opera-

tional state by making use of checkpoints and

snapshots, or the entire switch to a different pro-

gram such as the idea of n-version programming.

Further, state repairs concern reconfiguration and

can be used for self-healing by, e.g., moving

software applications between multiple comput-

ing nodes (Kain et al. (2020)), input modification

and error virtualization. In Keromytis (2007), ap-

proaches focusing on recovering from attacks are

presented. For example, DIRA by Smirnov and

Chiueh (2005) automatically detects and recovers

(control-hijacking) buffer overflow attacks by pre-

venting the identified attack from propagating and

rolling back to a safe state if necessary.

On system level, self-healing approaches focus

on identifying and correcting poorly performing

processes. For instance, in the SafeAdapt project

(Schleiss et al. (2014)), a software core per-

forming self-configuration to achieve an effective

fault-tolerant electrical and electronic architecture

for autonomous vehicles was developed. Follow-

ing a similar idea, Kain et al. (2020) developed

“FDIRO” as an extension of the well-established

Failure Detection Identification and Recovery of

the space domain for automotive, with the addi-

tion of a self-organization step. The goal of the

authors is to achieve higher fault tolerance and

availability. Both approaches achieve self-healing

through the deployment of other self*-properties.

However, regardless on what level self-healing

is concerned, we can observe that the process

scheme, visualized in Fig. 1, is identical (see also

Psaier and Dustdar (2011). First, some monitoring

mechanisms must detect and identify a failure.

For various software approaches, such monitor-

ing is an oracle that states whether the observed

behavior matches a given specification. Then this

failure must be located and its cause diagnosed.

Once information about the failure is gathered, the

system tries to adapt itself by generating possible

fixes for the problem. These are tested, and the one

aBugs that are difficult to reproduce because they often vanish

during their investigation

self-
diagnosis

self-
monitoring

self-
adap on

self-
tes ng

anomalous
event

fault
iden ca on

candidate
x

genera on

deployment

Fig. 1. Self-healing Scheme

that is offering the best target state is deployed.

3. Modeling Self-Healing

In contrast to the previously introduced ap-

proaches, we are interested in modeling the re-

sulting behavior of the implemented self-healing

techniques. Therefore, we must include all self-

healing steps displayed by Fig. 1 in Section 2.1.

Thus we need to define four modeling func-

tions: self-monitoring M , self-diagnosis Δ, self-

adaption A and self-testing T . Earlier we saw

that self-healing could be performed on different

levels. While hardware and software approaches

are part of the same component, but system level

approaches concern multiple components, we de-

velop two individual approaches for either level.

Furthermore, we saw that safety and security re-

pairs differ due to the nature of their cause. For

example, Heisenbugs can often be healed by sys-

tem restarts, while malicious code persists and

would require a software rollback. Therefore it is

necessary to model them separately.

3.1. Component Level

The self-monitoring function M models the suc-

cess of the implemented self-monitoring tech-

nique. Thereby more than one self-monitoring

function can be modeled. In this way, we can

consider distinct monitoring functions for safety

Msafe (e.g. representing a Watchdog) and for

security Msec (e.g. representing an Intrusion De-

tection System (IDS)) of the same component. We

define M(t) as the probability that the failure or

attack is detected at time t. Assuming a random

distribution of the detection time with a detection

337Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

rate θ, we can define a specific Mk(t) as

Mk(t) =

{
0 t < tfailed

1− e−θ∗(t−tfailed) t ≥ tfailed
(1)

whereby tfailed is the point in time the failure or

attack in the component occurred. In case the be-

havior of the implemented self-monitoring cannot

be described by distribution functions or similar

mathematical equations, the following worst-case

assumption can be used:

Mk(t) =

{
0 t < tfailed + tmax M

1 t ≥ tfailed + tmax M

(2)

With the worst-case assumption, the duration

of self-monitoring always takes time tmax M .

Thereby tmax M is defined as the maximum time

the self-monitoring procedure is allowed to take.

Otherwise, self-monitoring has failed. Similarly,

self-diagnosis Δ and self-testing T are modeled.

Thereby, we define Δ(t) as the probability that the

cause of the failure or attack is found at time t. By

assuming a random distribution of the diagnosis

time with a diagnosis rate δ and tM being the

point in time that the self-monitoring detected the

failure or attack. A specific Dk(t) can be defined

in the same fashion as Eq. (1).

T (t) defines the probability that the component

performed the self-testing successfully at time t.

Assuming a random distribution of the self-testing

time with a testing rate τ and tA being the point

in time that the self-adaption process ended, a

specific Tk(t) can also be defined in the same

fashion as Eq. (1).

For Δ(t) and T (t) the worst case assumptions

displayed in Eq.(2) can be used accordingly with

the maximum duration times tmax Δ and tmax T .

In our opinion the self-adaption step is the most

significant one, as it is presumably the step with

the highest effort, criticality and time consump-

tion. For self-adaption on component level, we

model the self-adaption process by assigning to

each repairable application or hardware one or

more self-adaption models Ai. Thus, it is pos-

sible to model safety and security self-adaption

processes individually. In addition, it is also pos-

sible to create more than one safety or security

self-adaption model per hardware or application.

Thereby, the number i of self-adaption models

depends on the implemented behavior. Each im-

plemented self-adaption process is represented by

its model Ai. The model itself can be represented

by a function of time t and a self-adaption rate

μ. Thereby, Ai(t) describes the probability that a

component that has not been available at time t

will be available in the interval (t, t+dt). Assum-

ing a self-adaption process with a random repair

behavior, a specific model Ak(t) can be described

with an exponential distribution function:

Ak(t) =

{
0 t < tΔ

1− e−μ∗(t−tΔ) t ≥ tΔ
(3)

whereby tΔ is the point in time the cause of failure

or attack is detected.

In addition to the direct modeling of the failure

and attack behavior, e.g., via a failure or attack

distribution function F (t, λ), it is now possible to

also include modeling of the here presented four

steps of the self-healing scheme as visualized in

Fig. 2.

Fig. 2. Self-healing Model Extensions

3.2. System Level

For self-monitoring, self-diagnosis and self-

testing, we are using a similar modeling idea as

on component level in case additional implemen-

tation for these steps exist on system level. Other-

wise, the self-adaption on system level can also be

triggered by self-monitoring or self-diagnosis on

component level in case the self-adaption process

on component level has failed or is unavailable.

For self-adaption on system level, we are propos-

ing two modeling techniques:

(1) Self-adaption triggered by another component

(2) Self-adaption via an adjustment of the system

configuration

338 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

3.2.1. Self-Adaption by another Component

On system level, we have to consider that a self-

adaption process can also be triggered by another

component, e.g., some superordinate voter or by

an over-the-air update. This concept includes ad-

ditional repair behaviors that have to be modeled.

Due to the huge variety, individual modeling so-

lutions or worst-case assumptions should be used,

which consider the dependencies between the trig-

gered and triggering components. For example, it

must be ensured that the communication between

the triggered and triggering components is not

corrupted.

3.2.2. Self-Adaption via System Configuration

As mentioned in Section 2.1 existing system-level

approaches usually employ self-configuration by

dynamically changing software instances to avail-

able hardware resources. Thereby three main steps

can be identified:

• isolation of failed application instance

• determination of new system settings

• deployment of new system setting

These steps are modeled by a probability func-

tion, similar to the ones in Section 3.1. Thereby

fiso(t) describes the probability at time t that the

failed/erroneous application has been successfully

isolated. Assuming a random distribution of the

isolation time with an isolation rate η, we can

define fiso(t). Accordingly, the probability for the

determination of the new system setting fdet(t)

and the probability for the deployment fdep(t) of

the new system setting can be defined.

4. Implementation in ERIS

ERIS is a tool that implements a mathematically

formalized method for the safety and security

assessment of critical, connected systems firstly

published in Rinaldo and Hutter (2020), by pro-

viding a user interface for modeling, coupled with

an evaluation based on probabilistic model check-

ing. It characterizes by a joint modeling of safety

and security effects which aims to capture how in-

dividual component-specific failures, attacks and

their interdependencies impact the system’s oper-

ational capabilities. Subsequently a brief presenta-

tion of ERIS, its implementation of the determined

self-healing modeling and an exemplary applica-

tion is given.

4.1. Overview

ERIS takes the general system structure with its

design in regard to functional data and commu-

nication dependencies, component criticality and

redundancy as well as their failure and attack

behavior into account and abstracts it as a so-

called dependency graph. Thereby components

are represented by nodes, with the exception of

a special node Env that is modeling the system

environment where potential attackers reside. The

various interrelationships between nodes are cap-

tured by directed links of different types. These

links are generalized to express functional data

dependencies (Fct) like an actuator relying on

sensor data, access and command dependencies

(Reach) which may be exploited by an attacker

and security guarantees (Sec) reflecting the pro-

vision of security measures, e.g., by Hardware

Security Modules (HSMs).

To reason about component failures and attacks

three health states for nodes are distinguished:

• ok: working as intended

• defective: flawed/irresponsive due to a failure

• corrupted: occupied by an attacker

At start all nodes are considered ok. This state

may change indicated by the predominant depen-

dencies in combination with the provided failure

and attack specifications in terms of exponentially

distributed occurrence rates/probabilities. These

are assumed to be determined on the basis of

the hardware manufacturer’s specification, expert

knowledge and/or through detailed risk and vul-

nerability analyses. Based on the given criticality

specification, a definition that determines which

components require to be active to provide the

core system functionality is derived. To perform

a quantitative evaluation, the graph is transformed

into a Continuous-Time Markov Chain (CTMC)

where a state is a configuration of all node’s health

states and a transition indicates a single health

state change. In the big picture, the evaluation

yields the probability that the system reaches an

339Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

undesirable (non-operational) state, due to a com-

bination of safety failures and security attacks. In

automotive, we can use ERIS to determine the

worst-case behavior of the abstracted vehicle and

further, evaluate safety parameters like its avail-

ability and reliability. Ultimately ,these results can

be used as proof of legal documents or during the

development process, e.g., by comparing different

architectures.

Reach
Fct
Sec

n4

n2 n1

n5

n3

Env

ActuatorsComputing UnitSensors

Telematics Firewall

Fig. 3. Autonomous Vehicle Scheme

Figure 3 displays a very abstracted scheme of

an autonomous vehicle. A telematics unit is being

accessible from the outside and protected by a

firewall. It is further having an access relation-

ship to the computing node, the center piece of

the self driving system, to, e.g., provide soft-

ware/parameter updates. Sensors are delivering

functionally important data to that computing

node, which is processing this data to produce

commands for the actuators. For this example a

sufficient criticality definition would suggest that

the system cannot operate any more once its com-

puting node or the required sensors and actuators

cease to operate. In Rinaldo et al. (2021) a detailed

ERIS model of an autonomous vehicle can be

found.

4.2. Self-Healing

On behalf of the presented review on self-healing,

we implement the modeling scheme defined in

the previous Section 3 in ERIS. Due to ERIS’

characteristics, some trade-offs have to be made:

The self-testing process is left out completely

from the modeling and on component level we

only model the performance of the self-adaption

process. On system level, self-adaption triggered

by other components can be covered, yet self-

adaption by adjusting the system configuration

cannot, due to ERIS modeling perspective.

Each node ni is extended by the possibility

to define two different exponentially distributed

models Ani

safe(t) and Ani
sec(t), which model the

self-adaption process of the node after the occur-

rence of a safety failure Ani

safe(t), respectively a

security attack Ani
sec(t). Thereby, the user models

the safe-adapting behavior of a defect and a cor-

ruption by assigning two different adapting rates

μsafe and μsec to the node. In this way a user-

specific choice can be made with respect to the

self-adaption process of the represented compo-

nent. For instance, some components may only

implement basic mechanisms like reboots that will

not heal a corrupted state. These could be modeled

by solely defining a defect self-adaption rate. Oth-

ers may implement independent mechanisms for

safety and security, which are also supported in

this way.

On system level we implement the self-

adaption process triggered by another component

in two ways: (i) Triggered by one or multiple

nodes and (ii) triggered by the outside via the Env-

node. For both strategies it is essential that the

connection to these nodes is not disrupted. This

means, there must be a consecutive Reach-path

from the triggering node to the triggered node

available, where none of the connected nodes is

corrupted or defective. For option (i), it is es-

sential that the triggering nodes are operational

(ok). With this we model some sort of Watch-

dog behavior where other components perform the

self-monitoring and self-diagnosis and trigger the

repair action of the failed/corrupted component.

This has the benefit that we can take failures and

corruptions of the triggering component itself into

account: If this component is failed or corrupted,

the repair cannot be triggered. Option (ii) is sub-

stantially reflecting an over-the-air update mech-

anism. Figure 4 shows an example Markov path

with recovery of the previous system (Figure 3).

First, the firewall application experiences a defect

that may be healed. Then the telematics unit is cor-

340 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Fail
ok
ok
ok
ok
ok

n1
n2
n3
n4
n5

ok
ok
ok
def
ok

ok
ok
ok
def
cor

cor
ok
ok
def
cor

Fig. 4. Markov Path with Self-healing

rupted and if it cannot recover, the computing unit

is corrupted eventually, leading to a critical system

failure. We can see that in the Markov chain a

successful self-healing is simply a transition back

to an ok state of the node. For the big picture this

means that our system stays potentially longer in

non-failed system states and thus the availability

of the system can be increased. In our default

implementation we do not consider self-adaption

in the fail state, because we think that at this

point the system has already ceased to operate

for an undefined amount of time and we would

unnaturally increase its reliability estimation. The

reason for that is simple: In the worst-case the

vehicle ceases to operate on an active lane, unable

to guarantee the safe state.

To show the impact of self-healing we per-

formed an exemplary Markov analysis for reach-

ing the fail state in our pictured system with and

without self-healing. Thereby we assumed failure

and attack rates in the range of 0 1
h to 1, 24·10−5 1

h .

For the self-healing mode, we modeled the telem-

atics unit to be self-adaption with the success rates

μn5
safe = 6, 85 · 10−4 1

h and μn5
sec = 1, 23 · 10−4 1

h

and the firewall to be repairable from defects with

the success rate μn4
safe = 1, 23·10−4 1

h . We can see

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

3

Month of Operation

P
ro

b
ab

il
it

y
in

P
er

ce
n

t

without self-healing

with self-healing

Fig. 5. Failure Probability with/without Self-healing

a noticeable but moderate decrease in the overall

failure probability, explained by the fact that self-

healing only covers uncritical components that

constitute to critical components (e.g. the shown

Markov path). Thus, the critical sensor, computing

node and actuators can still fail irreparably.

5. Conclusion and Outlook

In the present paper a modeling scheme for self-

healing has been established, capturing its main

characteristics observable throughout various im-

plementation types, areas and levels. This model-

ing thereby provides for the properties’ general-

ized consideration in current and future verifica-

tion methods, which is crucial for its application

in critical, real-world systems. Its effectiveness

was shown by an implementation in an existing

tool and the execution of an example analysis. At

the moment, the modeling is limited to the rather

simple assumption of randomly distributed fail-

ures for indicating the self-healing success. Thus,

a refinement of this failure behaviour would be

beneficial for achieving a higher and more realistic

result precision. While this presents a first step

for including self-healing concepts in verification

methods, we also discovered that dependencies to

other self*-properties like self-configuration and

self-protecting exist that have to be considered for

an holistic verification. In the future we want to

investigate the interplay between the different OC

properties and their meaning for system verifica-

tion.

Acknowledgement

The present work is partially funded by the German
BMWE joint project on real driving validation (RDV).

References

Azim, M. T., I. Neamtiu, and L. M. Marvel (2014).

Towards self-healing smartphone software via

automated patching. In Proceedings of the 29th

ACM/IEEE international conference on Auto-

mated software engineering, pp. 623–628.

Candea, G. and A. Fox (2001). Recursive restarta-

bility: turning the reboot sledgehammer into a

scalpel. In Proceedings Eighth Workshop on

Hot Topics in Operating Systems, pp. 125–130.

341Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Dennis, L. A., R. Monroy, and P. Nogueira (2006).

Proof-directed debugging and repair. In Seventh

Symposium on Trends in Functional Program-

ming, Volume 2006, pp. 131–140.

Ehrig, H., C. Ermel, O. Runge, A. Bucchiarone,

and P. Pelliccione (2010). Formal analysis and

verification of self-healing systems. In D. S.

Rosenblum and G. Taentzer (Eds.), Fundamen-

tal Approaches to Software Engineering, pp.

139–153. Springer Berlin Heidelberg.

Fischer, P., F. Nafz, H. Seebach, and W. Reif

(2011). Ensuring correct self-reconfiguration

in safety-critical applications by verified result

checking. In Proceedings of the 2011 Workshop

on Organic Computing, OC’11, NY, USA, pp.

3–12. Association for Computing Machinery.

Güdemann, M., F. Nafz, W. Reif, and H. Seebach

(2006). Towards safe and secure organic com-

puting applications. In C. H. et.al. (Ed.), IN-

FORMATIK 2006 – Informatik für Menschen,

Bonn, Germany, pp. 153–160. K.

Horeis, T. F., J. Heinrich, and F. Plinke (2022).

Hybrid modeling for the assessment of complex

autonomous systems - a safety and security case

study. In M. C. L. et.al. (Ed.), Proceedings

of the 32nd European Safety and Reliability

Conference. Research Publishing.

Kain, T., H. Tompits, J.-S. Müller, P. Mundhenk,

M. Wesche, and H. Decke (2020). Fdiro:

A general approach for a fail-operational sys-

tem design. In F. D. M. Piero Baraldi and

E. Zio (Eds.), Proceedings of the 30th Eu-

ropean Safety and Reliability Conference and

15th Probabilistic Safety Assessment and Man-

agement Conference. Research Publishing.

Keromytis, A. D. (2007). Characterizing soft-

ware self-healing systems. In V. Gorodetsky,

I. Kotenko, and V. A. Skormin (Eds.), Com-

puter Network Security, pp. 22–33. Springer

Berlin Heidelberg.

Khalil, K., O. Eldash, A. Kumar, and M. Bayoumi

(2019). Self-healing hardware systems: A re-

view. Microelectronics Journal 93, 104620.

Monperrus, M. (2018). Automatic software repair.

ACM Computing Surveys 51(1), 1–24.

Müller-Schloer, C., C. von der Malsburg, and R. P.

Würt (2004). Organic computing. Informatik-

Spektrum 27(4), 332–336.

Nafz, F., H. Seebach, J.-P. Steghöfer, S. Bäumler,

and W. Reif (2010). A formal framework for

compositional verification of organic comput-

ing systems. In B. Xie, J. Branke, S. M. Sadjadi,

D. Zhang, and X. Zhou (Eds.), Autonomic and

Trusted Computing, pp. 17–31. Springer Berlin

Heidelberg.

Psaier, H. and S. Dustdar (2011). A survey on

self-healing systems: Approaches and systems.

Computing 91(1), 43–73.

Rinaldo, R., T. F. Horeis, and T. Kain (2021).

Hybrid modeling for the assessment of complex

autonomous systems - a safety and security case

study. In B. C. et.al. (Ed.), Proceedings of the

31st European Safety and Reliability Confer-

ence, Volume 31. Research Publishing.

Rinaldo, R. and D. Hutter (2020). Integrated anal-

ysis of safety and security hazards in automo-

tive systems. In S. K. Katsikas and F. Cuppens

(Eds.), Computer Security, Volume 12501 of

Lecture Notes in Computer Science, Guildford,

UK. Springer. ESORICS 2020, CyberICPS.

Schleiss, P., C. Drabek, and G. Weiss (2014).

Safeadapt deliverable 3.1 - concept for enforc-

ing safe adaptation during runtime. Published at

https://www.safeadapt.eu, Accessed 2023-01-

26.

Smirnov, A. and T.-c. Chiueh (2005). Dira: Au-

tomatic detection, identification and repair of

control-hijacking attacks. In 12th Annual Net-

work and Distributed System Security Sympo-

sium.

Stahl, T. (2022). Safeguarding Complex and

Learning-Based Automated Driving Functions

via Online Verification. Ph. D. thesis, Technis-

che Universität München.

Tomforde, S. (2011). An architectural framework

for self-configuration and self-improvement at

runtime. dissertation, Gottfried Wilhelm Leib-

niz Universität Hannover.

Tomforde, S., J. Hähner, and B. Sick (2014). In-

terwoven systems. Informatik-Spektrum 37(5),

483–487.

Tomforde, S., B. Sick, and C. Müller-Schloer

(2017). Organic computing in the spotlight.

CoRR abs/1701.08125.

