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Categorization of aircraft missions for exploitation by a digital twin 
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The use of new recurrent neural models with layers of attentions has proven to be very effective in monitoring the 
internal state of an aircraft's engines. Our research work has shown the effectiveness of these methods for predicting 
corrosion or just measuring a deterioration in performance. However, until now, only the data broadcast by the 
engine has been readily available, but it seems logical that the description of the mission and the way the pilot 
handles the aircraft seem equally important. We have therefore developed a mathematical method to describe each 
mission, in this way it becomes possible to import new data helping to monitor engine wear. In the meantime, these 
new measurements also give us a new methodology to explore the use of our systems. For example, we are now 
able to categorize flights and it will become possible to adapt our design and our maintenance offer to the real needs 
of airlines.   
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1. Introduction about PHM 
Prognosis & Health Monitoring (PHM) of aircraft 
engines consists in identifying characteristics to 
assess its condition. These algorithms are 
generally separated into two parts: an on-board 
component to build indicators from the 
measurements collected during each flight and 
another, on ground computers, which processes 
these measurements with other contextual 
elements to estimate trends or drifts in engine 
behaviour (Fig. 1). These drifts will be analysed 
by experts or artificial intelligence algorithms to 
anticipate risks of degradation. 

 
Fig. 1. PHM process. 

Initially, PHM directly used summary data 
produced during each flight in the form of 
snapshots. This first static analysis made it 

possible to identify damage present on the engine 
or a performance drift. By adding contextual data, 
such as meteorological and pollution data, the 
damage estimators could be seriously improved 
(Flandrois et al. 2009). 

2. Recurrent neural methods 
Finally, very recently, we have started to use 
recurrent temporal models that evaluate a latent 
state updated after each flight. The addition of this 
temporal component, which considers the history 
of the engine's successive missions, has improved 
the quality of our predictions (Fig. 2).  

 
Fig. 2. Observing the wear of an aircraft engine by 
increasing exhaust temperature and the effectiveness of 
subsequent repair work. Each point represent the mean 
value of 10000 simulated flight using the neural 
network.  
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The data set corresponds to the entire flight 
history of 40 aircraft equipped with the new 
LEAP engine. For each engine of these aircraft, 
we had information from visual inspections by 
boroscopy as well as from maintenance 
operations. The dynamic models seem more 
efficient than the previous static models even if 
potential counters which capitalized, for example, 
the time spent beyond certain load levels, are 
computed on board the aircraft (Langhendries and 
Lacaille 2022). 

3. Missions categorization 
One crucial element was still missing from these 
models, a description of the missions themselves. 
Indeed, each flight is different, and we have 
therefore implemented a detailed method of 
categorizing flights with a metric allowing them 
to be compared two by two. This method first 
performs a decomposition of the rotational speed 
of the fan, which in our case of turbojets is a 
relevant indicator of thrust. Once the flight has 
been segmented from this control signal, each 
flight segment is categorized. The complete flight 
can thus be described as a sequence of labels 
(Cottrell et al. 2019). To build a metric between 
the flights, we took care to use a topographic 
categorization procedure using self-organizing 
maps (SOM) to classify the segments. This type 
of categorization automatically gives a distance 
measure between segments, which makes it 
possible the use of an edit distance as a similarity 
measure between flights. 

 
Fig. 3. Automatic division of the flight into transient 
and stabilized segments. Each segment is then 
categorized by an unsupervised classification 
algorithm. The flight is thus transformed into a 
sequence of labels, as shown below the graph, which 
represents core rotations speed versus time. 

This metric consists of measuring the minimum 
cost of transforming one flight into another by 
exchanging, adding, or removing labels. Hence, 

we categorize the missions and enter the flight 
class as a new contextual data of the recurrent 
model.  

 
Fig. 4. This chart shows a specific type of flight 
identified by a category (each box on the self-
organizing map) among all flights in a given airline 
fleet. Here a specific behaviour can be observed by an 
increase in thrust before landing. 

4. Conclusion 
An advantage of this method is that it applies to a 
very large database of past flights automatically 
and is fast enough. When some missions are 
original, for example in the case of helicopter or 
military aircraft tracking, it is not possible to have 
instant flight summaries easily. Our method 
makes it possible to identify the categories of the 
most frequent flight segments and thus to 
reconstruct such snapshots from temporal data. 
This allows us to better control the evolution of 
the state of these engines, much more difficult to 
follow than for airliners. 
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