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On the one hand, the limit state function (LSF) can be used to define structural reliability, while complex structures 
frequently correspond to LSFs with high computational costs, necessitating numerous calls to LSFs for the reliability 
analysis of such structures. On the other hand, detailed paradigms and coarse paradigms are generally considered 
high-fidelity (HF) models with low model uncertainty and low-fidelity (LF) models with low computational cost, 
respectively. To effectively address both of these common challenges, this paper proposes an active learning multi-
fidelity surrogate modeling framework for structural reliability analysis (SRA). The multi-fidelity (MF) surrogate 
model has received widespread attention in the performance evaluation of complex structures by fusing models with 
different accuracies to reduce the computational demand and effectively balance the prediction performance and 
modeling cost of the surrogate model. In three numerical examples and one engineering example in different 
dimensions, two multi-fidelity surrogate models with four learning functions are tested and compared with the 
corresponding single-fidelity (SF) models. All the results demonstrate that the MF model based on this framework 
is more efficient than the SF model at reducing computational costs without compromising accuracy. 
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1. Introduction 
Limit state function (LSF) can be used to define 
structural reliability, while complex structures 
frequently correspond to LSFs with high 
computational costs, necessitating numerous calls 
to LSFs for the reliability analysis of such 
structures. In this context, the surrogate model can 
approximate true LSF effectively to model 
complex LSF at lower computational costs, and 
active learning can be further introduced to 
achieve modeling accuracy with fewer calls to 
LSF by adaptively selecting learning samples 
through the machine learning algorithm. Both can 
be used to respond to the challenge of balancing 
accuracy and efficiency in structural reliability 
analysis (SRA) and are rapidly becoming 
essential methods for the efficient evaluation of 
structural reliability. Accordingly, active learning 
surrogate model-based SRA is used in a wide 
range of fields, involving aeronautics and 
aerospace, automotive industry, civil engineering, 
critical infrastructures, land transportation, 
maritime and offshore technology, nuclear 
industry, railway industry, water transportation, 
etc. 

Nevertheless, the same analysis can correspond to 
multiple models with different paradigms (e.g., 
experiment, theory, simulation, big data), and 
different paradigms or even the same paradigm 
usually correspond to different fidelities. Detailed 
paradigms and coarse paradigms are generally 
considered high-fidelity (HF) models with low 
model uncertainty and low-fidelity (LF) models 
with low computational cost, respectively. 
Therefore, a similar challenge also exists in 
surrogate modeling, i.e., obtaining the quantity of 
interest (QOI) at an acceptable cost level by 
selecting models with appropriate fidelity. As an 
effective method to deal with this problem, the 
multi-fidelity (MF) surrogate model has received 
widespread attention in the performance 
evaluation of complex structures by fusing 
models with different accuracies to reduce the 
computational demand and effectively balance 
the prediction performance and modeling cost of 
the surrogate model. 

To effectively address both of these common 
challenges, this paper proposes an active learning 
multi-fidelity surrogate modeling framework for 
SRA: firstly, a multi-fidelity Kriging (MFK) or a 

multi-fidelity Gaussian process (MFGP) is 
modeled based on the theory of surrogate model 
and multi-fidelity; secondly, learning functions 
EIF (expected improvement function), EFF 
(expected feasibility function), U or H and its 
stopping criterion are applied to implement active 
learning; finally, Monte Carlo simulation (MCS) 
is used to implement reliability evaluation. This 
framework incorporates different fidelity 
information in the form of online data-driven to 
accomplish the trade-off between high prediction 
accuracy and low computational cost by 
combining HF and LF models. 

2. Proposed Framework 
An active learning multi-fidelity surrogate 
framework proposed in this paper is implemented 
as follows: 

Step 1. Generate MCSN  samples MCSx  with QMC 
(quasi-Monte Carlo), forming a sample pool MCSS . 

Step 2. Draw HFN  HF samples HFx and LFN  LF 
samples LFx  in MCSS  as initial training samples 
following nested sampling i.e., HF LF�x x (Le 
Gratiet, 2013; Jin et al., 2005; Park et al., 2017), 
and HF LF 1 3N N � (Lv, 2020), and calculate their 
responses � �HF HFg x , � �LF LFg x . Form the initial 
training set T . 

Step 3. Use the training set T  to construct the MF 
surrogate model MFg based on the mixed scale. 

Step 4. Calculate � �MF MCSg x  based on MFg  and 
calculate the learning function. 

Step 5. Determine the stopping condition of the 
learning function: if it is satisfied, go to Step 7; 
otherwise, go to Step 6. 

Step 6. Determine an additional sample HFx  based 
on the learning function, and further determine the 
corresponding three LFx  and the responses of 
these four samples to update the training set T , 
and return to Step 3. 

Step 7: Calculate the coefficient of variation of the 
failure probability estimation: if it is less than 5%, 
output the estimation and the process ends; 
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otherwise, expand MCSS  with QMC and return to 
Step 4. 

3. Academic Validation 

Denote the HF/LF LSF as � �HFg X  and � �LFg X , 
respectively, cost as 1.0 × (number of initial HF 
samples + number of added HF samples) + 0.1 × 
(number of initial LF samples + number of added 
LF samples), and error as the error relative to 
MCS. 

3.1. One-dimensional example 
To observe the effect of the model at the failure 
boundary, the HF model (Sasena et al., 2002; 
Huang et al., 2006; Hu, 2019) and LF model 
(Huang et al., 2006; Hu, 2019) are overall 
translated to obtain a modified 1D HF/LF LSF, as 
shown in Eq. (1), Table 1, and Fig. 1. The results 
are shown in Table 2 and Fig. 2.  

For this 1D example: H converges early, leading 
to the largest error; the U is generally costly and 
over-convergence is more obvious in MFGP+U; 
due to the extremely low dimensionality, a very 
small number of HF samples can obtain high 
surrogate accuracy, and LF samples tend to 
adversely affect MF surrogates, such as 
MFGP+EIF; MF surrogates do not show the 
advantage. 
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Table 1. Example 1, input variables. 

Variable Distribution minimum maximum 
X  Uniform 0 10

 

 
Fig. 1. Example 1, LSF. 

 

Table 2. Example 1, reliability analysis results. 

Method Learning function cost Pf Coefficient of variation error (%) 
MCS N/A 107 0.1178500 0.0008 N/A 

Kriging 

EIF 5+5 0.1170000 0.0433 0.7213 
EFF 5+7 0.1172500 0.0434 0.5091 

U 5+7 0.1172500 0.0434 0.5091 
H 5+4 0.0856250 0.0434 27.3441 

GP 

EIF 5+5 0.1172500 0.0434 0.5091
EFF 5+6 0.1172500 0.0434 0.5091 

U 5+6 0.1172500 0.0434 0.5091 
H 5+4 0.1162500 0.0308 1.3577 

MFK 

EIF 5+6+0.1×(15+18) 0.1175000 0.0433 0.2970 
EFF 5+6+0.1×(15+18) 0.1175000 0.0433 0.2970 

U 5+7+0.1×(15+21) 0.1175000 0.0433 0.2970 
H 5+5+0.1×(15+15) 0.0356250 0.0411 69.7709 

MFGP 

EIF 5+3+0.1×(15+9) 0.0890000 0.0358 24.4803 
EFF 5+5+0.1×(15+15) 0.1178125 0.0216 0.0318 

U 5+9+0.1×(15+27) 0.1171250 0.0153 0.6152 
H 5+2+0.1×(15+6) 0.0513750 0.0480 56.4064 
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Fig. 2. Example 1, cost and error. 

3.2. Two-dimensional example
Similarly, the translation of the model (Xuan, 
2020) is performed to obtain a modified 2D 
HF/LF LSF, as shown in Eq. (2), Table 3, and Fig. 
3. The results are shown in Table 4 and Fig. 4.  
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Table 3. Example 2, input variables. 

Variable Distribution Mean Standard deviation 
1X  Normal 1 0.5 
2X  Normal 0 0.5 

 
Fig. 3. Example 2, LSF. 

Table 4. Example 2, reliability analysis results. 

Method Learning function cost Pf Coefficient of variation error (%) 
MCS N/A 107 0.0525278 0.0013 N/A 

Kriging 

EIF 12+57 0.0491250 0.0492 6.4781 
EFF 12+95 0.0502500 0.0486 4.3364 

U 12+82 0.0486062 0.0486 7.4658 
H 12+80 0.0501250 0.0487 4.5743 

GP 

EIF 12+91 0.0505000 0.0485 3.8604 
EFF 12+147 0.0496250 0.0489 5.5262 

U 13+94 0.0501250 0.0487 4.5743 
H 12+139 0.0496250 0.0489 5.5262 

MFK 

EIF 12+73+0.1×(36+219) 0.0503438 0.0172 4.1579 
EFF 12+96+0.1×(36+288) 0.0501250 0.0487 4.5743 

U 12+72+0.1×(36+216) 0.0502500 0.0486 4.3364 
H 12+140+0.1×(36+420) 0.0519297 0.0119 1.1387 

MFGP 

EIF 12+30+0.1×(36+90) 0.0502500 0.0486 4.3364 
EFF 12+45+0.1×(36+135) 0.0535000 0.0470 1.8508 

U 12+42+0.1×(36+126) 0.0506250 0.0484 3.6225 
H 12+50+0.1×(36+150) 0.0533571 0.0356 1.5789 
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Fig. 4. Example 2, cost and error. 

 

For this 2D example: the learning function with 
cost advantage tends to have unsatisfactory error, 
thus it is difficult to directly conclude the 
superiority of the learning function; H is towards 
over-convergence; MFGP has more cost 
advantage and less error with the same learning 
function; EFF works better when combined with 
MFGP; as the dimension increases to two, the MF 
model starts to show its advantages. 

3.3. Six-dimensional example 
A 6D HF/LF LSF (Xuan, 2020) is shown in Eq. 
(3) and Table 5. One hundred samples were 
randomly sampled and their responses are shown 
in Fig. 5. The results are shown in Table 6 and Fig. 
6.

 

� �
� � � � � �

� � � � � �
� �

� � � � � �
� � � � � �

� � � �

HF

2 2 2
1 2 3

2 2 2
4 5 6

LF

2 2 2
1 2 3

2 2 2
4 5 6

2 2
2 6

25 2 2 1

4 1 4 5

25 2 2 1
0.3

4 1 4

2 1 2 4

g

X X X

X X X

g

X X X

X X X

X X

�
	
� � � � � � �	
	

� � � � � �	
		


	 
 �� � � � � �	 � �� �	 � �� � � � �	 � �
	

� � �	�

X

X (3) 

 

Table 5. Input variables. 

Variable Distribution Mean Standard deviation 
1X  Normal 1 2 
2X  Normal 0 1.5 
3X  Normal 1.5 1 
4X  Normal 2.5 2 
5X  Normal 2 2 
6X  Normal 3 2 

 

 
Fig. 5. Example 3, response of samples. 
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Table 6. Example 3, reliability analysis results. 

Method Learning function cost Pf Coefficient of variation error (%) 
MCS N/A 107 0.0030590 0.0057 N/A 

Kriging 

EIF 12+52 0.0029453 0.0364 3.7165 
EFF 12+89 0.0029414 0.0364 3.8442 

U 12+87 0.0029375 0.0364 3.9719
H 12+55 0.0028945 0.0367 5.3766 

GP 

EIF 12+27 0.0029375 0.0364 3.9719 
EFF 12+37 0.0029375 0.0364 3.9719 

U 12+50 0.0029414 0.0364 3.8442 
H 12+31 0.0029453 0.0364 3.7165 

MFK 

EIF 12+32+0.1×(36+96) 0.0029492 0.0363 3.5888 
EFF 12+91+0.1×(36+273) 0.0029180 0.0365 4.6104 

U 12+74+0.1×(36+222) 0.0029180 0.0365 4.6104 
H 12+69+0.1×(36+207) 0.0029219 0.0365 4.4827 

MFGP 

EIF 12+28+0.1×(36+54) 0.0029883 0.0361 2.3118 
EFF 12+98+0.1×(36+294) 0.0029219 0.0365 4.4827 

U 12+90+0.1×(36+270) 0.0029297 0.0365 4.2273 
H 12+35+0.1×(36+105) 0.0029688 0.0362 2.9503 

 

 

 
Fig. 6. Example 3, cost and error. 

For this 6D example: EIF and H have lower costs 
and smaller errors, especially the combination 
with MFGP has the smallest error and the cost is 
not much different from other methods; GP has 
the lowest cost and acceptable error; with the 
further increase of dimensionality, the combined 
advantage of MF model is more obvious, 
especially MFGP+EIF/H. 

4. Engineering Application 
Consider the tooth flank contact stress of a pinion 
from a gear pair in the fatigue contact test for the 
aero engine. According to international standard 
(ISO, 2019): 
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According to Hertzian contact mechanics (Hertz, 
1882): 
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Therefore, the HF/LF LSF for tooth flank contact 
fatigue failure is 
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LF HP H1 LF

g
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X
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where HP�  is the permissible contact stress, 
which is calculated according to Eq. (7). 

 H lim NT
HP L v R W X

H min

Z
Z Z Z Z Z

S
�

� �  (7) 

The input vector � �Tn 2 1, , , ,m b E T��X  is shown 
in Table 7, and the response of one hundred 
random samples is shown in Fig. 7.

Table 7. Example 4, input variables. 

Symbol 
(unit) Mean Coefficient of 

variation Description 

nm  

( mm ) 
5 0.001 Normal 

module 

2b  

( mm ) 
24 0.01 Face width of 

wheel 

E  
( Pa ) 

112.07 10�  0.01 Modulus of 
elasticity 

�  0.298 0.01 Poisson’s 
ratio 

1T  

( N m� ) 
145 0.1 Torque of 

pinion 

 

 
 

Fig. 7. Example 4, response of samples. 

 

For this engineering example: EIF and H are more 
advantageous in cost, but the comprehensive 
effect of U is more stable; the error of 
MFGP+EIF/H is extremely low, and the 
difference in cost among other methods is not 
large; in general, GP and MFK are more 
compatible with different learning functions. 

 

Table 8. Example 4, reliability analysis results. 

Method Learning function cost Pf Coefficient of variation error (%) 
MCS N/A 107 0.0608430 0.0012 N/A 

Kriging 

EIF 12+4 0.0638750 0.0428 4.9833 
EFF 12+15 0.0610000 0.0439 0.2580 

U 12+8 0.0610000 0.0439 0.2580 
H 12+2 0.0621250 0.0434 2.1071 

GP 

EIF 12+4 0.0611250 0.0438 0.4635 
EFF 12+4 0.0610000 0.0439 0.2580 

U 12+5 0.0610000 0.0439 0.2580 
H 12+4 0.0610000 0.0439 0.2580 

MFK 

EIF 12+4+0.1×(36+12) 0.0610000 0.0439 0.2580 
EFF 12+14+0.1×(36+42) 0.0607500 0.0440 0.1529 

U 12+8+0.1×(36+18) 0.0610000 0.0439 0.2580 
H 12+3+0.1×(36+9) 0.0611250 0.0438 0.4635 

MFGP 

EIF 12+6+0.1×(36+18) 0.0608750 0.0439 0.0526 
EFF 12+65+0.1×(36+195) 0.0583750 0.0449 4.0563 

U 12+25+0.1×(36+75) 0.0605000 0.0441 0.5637 
H 12+2+0.1×(36+6) 0.0607500 0.0440 0.1529 
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Fig. 8. Example 4, cost and error. 

5. Conclusion 
In three numerical examples in different 
dimensions, two multi-fidelity surrogate models 
with four learning functions are tested and 
compared with the corresponding single-fidelity 
(SF) models, which validate the effectiveness of 
the proposed framework. For the engineering 
example of aero engine gear in contact fatigue test, 
the HF LSF and the LF LSF are constructed based 
on the standard formulation and the simplified 

formulation respectively. The proposed 
framework is used for its SRA and the superiority 
is proved. All the results demonstrate that the MF 
model based on this framework is more efficient 
than the SF model at reducing computational 
costs without compromising accuracy. 
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