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Reliability, Availability and Maintainability (RAM) studies have been performed on equipment, 
systems, and oil and gas production fields to predict availability targets using reliability block diagrams 
and equipment runtime statistical analysis. However, no integration of RAM analysis involving multiple 
fields can be found; multi-field data need to be updated manually, and there is no live data updating 
feature available, resulting in data inaccuracy and longer duration to complete RAM analysis. In this 
study—anchoring on the theme of integration and automation—the authors aim to improve completion 
time, increase the visibility of availability data for the production field and improve flexibility in data 
update. The main objective is to allow for accurate prediction of field availability for the following 
month and to expedite the correct intervention actions identification to meet the required target. The 
predictive model was developed utilizing Microsoft Azure Machine Learning and R Programming by 
utilizing availability data of field with Mean Absolute Error less than one percent. As part of machine 
learning improvement, it is recommended for the model to be expanded to include other fields with 
integration of more live data. 
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1. Introduction 
Upstream RAM studies are used widely to 
determine projected availability or anticipated 
production of a gas/oil production field via 
development of reliability block diagrams and 
runtime analysis of equipment making up the 
field. Typically, the simulated 
availability/production numbers for individual 
fields are used to predict performance of the entire 
supply chain. Currently, RAM studies are being 
carried out individually on systems, equipment, or 
at field level using different type RAM software. 
While all the fields are linked to each other via 
pipelines and supported by gas compressor or oil 
pumping stations and storage facilities, however 
there is no integrated RAM has been done to 
study and model the entire supply chain, 
integrating data from equipment level. Besides 
that, each individual RAM software is unique in 
feature and unable to interface with each 

other’s. Each time when full system (or supply 
chain) performance is needed, data must be re-
entered manually resulting in high likelihood of 
data-entry error and longer time required for 
completion as there is no live data updating.  

A typical upstream field network is illustrated in 
Figure 1, with each of field details is illustrated in 
reliability block diagrams shown in figure 2. 

Fig. 1. Typical upstream field network. 
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In this study which aim to develop the baseline 
Model via machine learning tools using monthly 
field Availability data from 2018 to 2020, with 
full utilization of Machine Learning Studio and R 
Programming (which can replicate reliability 
block diagram development in programming). 
The study involved data extraction from daily 
operation reports, data correlation, Exploratory 
Data Analysis (EDA), and feature importance 

which is portrayed in Power BI. Under machine 
learning methodology, it involves with feature 
creation, feature transformation, feature reduction 
and feature selection. Twenty-four sets of testing 
and combination of different features are used 
before a final combination that constitutes the 
model is selected based on lowest Mean Absolute 
Error (MAE) with the lowest difference between 
test and validation data. The model is validated 
via Model Validation Strategy using 
hyperparameter tuning and cross validation which 
resulted in generation of validated MAE results. 
For the continuation of the model and as part of 
machine learning improvement, it is 
recommended for the model is expanded to 
include other fields with more data and 
continuous validation using other programming 
software such as Phyton or even improvement of 
existing R programming coding. 

2. Methodology 
Eight years of availability (Ref.1) data from 
selected equipment which had direct production 
impact are collected between 2013 and 2020. 
Data quality is manually analysed to ensure 
consistency throughout the eight-year period. 
However, from 2013 to 2017, there were changes 

on equipment configuration and new equipment 
were added to the system because of changes in 
maintenance and operation philosophy. Thus only 
2018 to 2020 Availability data are finally used in 
this machine learning experiment. Figure 3 shows 
Equipment Availability tracking from 2018- 2020 
while Figure 4 outlines the keys steps in the 
methodology. Once the range of data is selected, 
Exploratory Data Analysis is performed to further 
understand the characteristics of data in terms of 
proportion of missing values, data outliers’ 
existence, correlation among the features in the 
data, and the most important features that could 
highly contribute to higher accuracy in predictive 
models. 

Fig. 2. Typical Reliability Block Diagrams Fig. 3. 2018- 2020 Equipment Availability 
Tracking 
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Fig. 4. Key steps in the methodology. 

 
2.1. Exploratory Data Analysis (EDA) (Ref -6) 

Equipment’s’ Availability data with missing 
values are manually analysed to impute the 
possible values for them. The objective of 
treatment of these missing values is to prevent 
problems caused by missing data that could arise 
when training the model. Outliers are handled by 
removing a few points of lowest and highest data 
using threshold approach. In Machine Learning 
Studio, we use the clip values component to 
identify and optionally replace data values that 

were above or below a specified threshold with a 
mean, a constant, or other substitute value. Outlier 
data are observations that appear far away and 
diverge from an overall pattern in the collected 
data. It could skew and mislead the training 
process of machine learning algorithms, resulting 
in longer training times, and less accurate models. 

In this experiment, we use 99% upper threshold 
and 1% lower threshold. 

The feature correlation and feature 
importance approach are used to identify 
important features that have most relationship to 
the target variable, i.e., Availability variable. The 
results could be one or multiple features 
depending on another feature or a cause for 
another feature or it could be one or multiple 
features associated with other features. This 
problem called multicollinearity. When it 
happens, one feature in a machine learning model 
can be linearly predicted from the other features 
(not the availability target variable) in the dataset.  
2.2. Feature Engineering 
In the Feature Engineering phase, the collected 
data from various systems are aggregated using 
engineering reliability knowledge by replicating 
reliability block diagram in R programming. The 
value of Availability (AV) ranges from 0 to 1, 
where 1 represents full Availability of the system. 
Sample snippet codes for the aggregation is 
depicted in Figure 5; lines 8 to 14, show that three 
equipment which located to location BAPA, i.e., 
BAP_A_P801_AV, BAP_A_P802_AV, 

BAP_A_P803_AV are used to calculate the 
Availability of BAP_A in which an aggregated 
new feature was created in the data. 

Feature Transformation (Ref-8) such 
Principal Component Analysis (PCA) and Fisher 
Linear Discriminant Analysis (LDA) is used in 
this experiment to project the data onto weights 
vector that represent the data. In general, the 
method analyses the data and creates a reduced 
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Fig 5 Availability Aggregation using R programming. 
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features that capture all the information contained 
in the dataset, but in a smaller number of features. 
Principal component analysis (PCA) is widely used for 
dimension reduction and embedding of real data in 
social network analysis, information retrieval, and 
natural language processing. The LDA method is 
often used for dimensionality reduction, because 
it projects a set of features onto a smaller feature 
space while preserving the information that 
discriminates between classes of the target 
variable, i.e., Availability. This method not only 
reduces computational costs for a given 
classification task but can help prevent overfitting 
in machine learning model. Thus, both methods, 
PCA and LDA were chosen for this experiment. 

2.3. Machine Learning Models (Ref-2,3,5& 7) 
The model development and experimentation are 
performed in Azure Machine Learning platform; 
in particular, Linear Regression (LR), Boosted 
Decision Tree (BDT) and Neural Network (NN) 
are selected for this experiment.  

Theoretically, LR attempts to establish a 
linear relationship between one or more 
independent variables to a numeric outcome, in 
this case Availability. If there is a linear 
relationship between selected features and the 
numeric outcome such as in Figure 6, it could 
churn out a very accurate model. LR is a common 
statistical method, which has been adopted in 
machine learning and enhanced with many new 
methods for fitting the line and measuring error. 
It also tends to work well on high-dimensional, 
sparse data sets lacking complexity. In Azure 
Machine Learning Studio, the module supports 
two methods to measure error and fit the 
regression line: ordinary least squares (OLS) 
method, and gradient descent. Gradient descent is 
a method that minimizes the amount of error at 
each step of the model training process. OLS 
refers to the loss function, which computes error 
as the sum of the square of distance from the 
actual value to the predicted line and fits the 
model by minimizing the squared error. Both 
methods have been applied to identify the best 
method that can produce the most accurate model. 

 
Fig. 6. Example of linear relationship between feature 

(x) and numeric outcome (y) 
 

Another approach, BDT is a kind of 
ensemble of regression trees using boosting 
method. Boosting means that each tree is 
dependent on prior trees. The algorithm learns by 
fitting the residual of the trees that preceded it. 
Thus, boosting in a decision tree ensemble tends 
to improve accuracy with some small risk of less 
coverage. In Azure Machine Learning Studio, 
BDT uses an efficient implementation of the 
MART gradient boosting algorithm. Gradient 
boosting is a machine learning technique for 
regression problems. It builds each regression tree 
in a stepwise fashion, using a predefined loss 
function to measure the error in each step and 
correct for it in the next. Thus, the prediction 
model is an ensemble of weaker prediction 
models. Figure 7 shows a simple process flow of 
BDT. 
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Fig. 7. Boosted Decision Tree Process Flow 
 

Another approach in this experiment, NN, is 
widely known for use in deep learning and 
modelling complex problems such as image 
recognition, they are easily adapted to regression 
problems. Any class of statistical models can be 
termed a neural network if they use adaptive 
weights and can approximate non-linear functions 
of their inputs. Thus, neural network regression is 
suited to problems where a more traditional 
regression model cannot fit a solution. Figure 8 
shows the NN configuration in Azure Machine 
Learning Studio (top image) which is represented 
in the NN architecture (bottom image). 

 

 
Fig. 8. NN configurations in Machine Learning Studio 

and basic NN architecture 
 

In summary, these three types of Machine 
Learning approaches are selected from easy to 
medium and complex models such Neural  

 
 

Fig. 9. Summary of Model Experimentation Results 
 

Network is used to identify the best algorithm that 
can fit in the use case of asset availability. 
2.4. Model Validation 

Model validation consists of hyperparameter 
tuning, cross validation strategy and model testing 
to ensure its accuracy. The goal of 
hyperparameter tuning is to determine the 
optimum configurations for a machine learning 
model. The component builds and tests multiple 
models by using different combinations of 
settings. It compares metrics over all models to 
get the combinations of settings. There are two 
methods available: entire grid, and random 
sweep. We use entire grid method to search all 
over a grid of predefined configuration. This 
method will try different combinations of 
configurations to identify the best learner. 

Cross validation strategy is a technique used 
in machine learning to assess both the variability 
of a dataset and the reliability of any model 
trained through that data. It divides the dataset 
into some number of subsets or folds. Then a 
model is built on each fold and returns a set of 
accuracy statistics for each fold. By comparing 
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the accuracy statistics for all the folds, we can 
interpret the quality of the dataset and understand 
whether the model is susceptible to variations in 
the data. In this experiment, we used 10 folds. The 
usage of three (3) methods is to ensure the 
validation processes are done more balanced and 
holistically. 

3. Experimental Results and Discussions 

The success criteria of model acceptance are: 

a) MAE result for both validation and test data 
should be less than 10%. 

b) The different between MAE validation and 
MAE test data should be less than 5%  

From various experimentation results (a total 
of 24 combinations of data, methods, and models), it 
is found that combination of Fisher LDA with 14 
sets of data, correlation of spearman method and 
boosted decision tree model yield the best result with 
MAE validation data of 0.095 (9.5% error) and 
MAE test data of 0.096 (9.6%) while the difference 
between both validation and test data is 0.1 %.  
Figures 9 and 10 show the various test results, 
Machine Learning experimentation model and 
simulation results. From the various combination of 
data, method, and model, it took 23 set of different 
type of combination to finally meet the success 
criteria. The closest final combination which are  
Fisher LDA with 14 sets of data, correlation of 
kindle method and boosted decision tree model yield 
the best result of MAE validation data of 0.084 
(8.4% error ) and MAE test data of 0.095 (9.6%), yet 
it is not been selected as the best model despite 
having lower MAE error rate , both different MAE 
validation and  test error rate is higher 0.1 (1% 
different error) compare to selected final model 
which has MAE different of 0.1%. 

 
Besides that, as it is the experimental and 

baseline modelling also shown several crucial 
insights as below, 

a) Model combination with raw data without 
undergoing feature transformation will 
yield significantly high MAE error for 
both validation and test data of more than 
10%.  

b) Among three (3) model combination with 
raw data, different between both MAE 
validation and test are more 1% 

c) Under the next three (3) model 
combination with raw data with data 
filtering, the MAE test and validation are 
lower. 

d) For data which undergoes feature 
transformation, the MAE test and 
validation also show lower error 
compared to without feature transformed 
data. 

e) For data which undergoes feature 
transformation with machine learning, it 
is shown there is increase in MAE test and 
validation error ranging between 10% to 
20% 

f) With the inclusion of BDT in model 
combination, there is decreasing trend in 
MAE test and validation error. 

g) Combination of Fisher LDA and BDT, it 
further reduces the MAE validation and 
test data error while improving the 
difference between both MAE validation 
and test data. 

h) With more set of data been aligned with 
fisher LDA and BDT, it yields the best 
result in both low MAE and its difference 
between both MAE validation and test 
data. 
 

As the summary of the result, it shown that 
with advancement of technology, operation and 
maintenance data become more readily accessible, 
voluminous in nature and available in various format 
and structure, machine learning increasing become 
fundamental and more useful tools in ensuring faster 
data processing/structuring, increasing process cycle 
efficiency and lower error which resulted in much 
better accuracy in predictive analysis. 
 

Fig. 10. Microsoft Azure Machine Learning – Model 
Evaluation Result 



2550 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

 

4. Conclusion 
As the organization embraces digital as part of its 
business strategy, it is crucial for more 
collaborative effort between engineering/operation 
and digital engineering. With the voluminous data 
readily available and with the expectation of pace 
and efficiency, this study proved to be a great 
testament of such, with company’s desired target 
(availability/production efficiency) derived from 
the result of RAM study at faster pace and better 
accuracy. With the greater and deepest 
embracement of technology and artificial 
intelligence technology, it amplifies data 
transparency while increasing work efficiency. 

The current experimentation model is a baseline 
model, and it can be further enhanced and able to 
be scaled up by: 

1) Improving analytics dashboard visibility 
which includes predictive analysis 
incorporating well and production 
deferment/estimation performance while 
providing more analysis insights 

2) Enhancing R programming coding by 
including sensitivity analysis various 
operating and maintenance philosophies that 
including production dynamics 
performances 

3) Validating R programming accuracy with 
other programming language (e.g., Phyton) 
with the aim of automating in updating 
programming code, and 

4) Expanding the model to include other 
operating fields and assets with the end of 
goal having an integrated model of all 
operating assets within organization for 
better and live monitoring of asset 
performance 

5) Enhancing the model accuracy by testing 
different type of model combination ranging 
from different feature engineering method 
and machine learning tools as it increases the 
model robustness and expedite on the 
machine learning curve. 

6) Validating model accuracy with other 
machine learning algorithm as part of 
continuous improvement 
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