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Very recently, a novel stochastic process model, called the bounded transformed gamma process, has been proposed 
to describe bounded degradation phenomena, where the degradation level can not exceed a given upper bound, due 
to inherent features of the degradation causing mechanism. In this paper, a Bayesian estimation procedure is 
developed and illustrated for such a stochastic process, which uses prior information on the upper bound and on 
other physical characteristics of the degradation phenomenon under observation. Several experimental scenarios are 
considered and, for each of them, specific prior distributions are suggested which allow to convey into the inferential 
procedure the different information the analyst is assumed to possess. A Monte Carlo Markov Chain method is 
developed to estimate the process parameters and some functions thereof, such as the mean degradation level, the 
residual reliability of a unit, and to predict the future degradation growth. Finally, the proposed procedure is 
validated on a set of real data containing wear measurements in different time instants of the liners of an 8-cylinder 
Diesel engine for marine propulsion.  
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1. Introduction 
Most of the stochastic models adopted to describe 
degradation phenomena of technological units 
assume that their degradation level can increase 
infinitely. However, this assumption is often not 
realistic, because many real-world degradation 
phenomena are intrinsically bounded above (see, 
e.g., Giorgio et al. (2015a), Ling et al. (2015), and 
Deng and Pandey (2016)), if only because 
technological units have finite size. 

Motivated by this argument, very recently 
Fouladirad et al. (2023) proposed a bounded 
version of the transformed gamma process 
(Giorgio et al. (2015a)), named bounded 
transformed gamma process (BTGP), expressly 
conceived to describe monotonic increasing 
degradation phenomena where the degradation 
level can not exceed an upper limit . A 

distinguishing feature of the BTGP, with respect 
to other existing bounded models (see, e.g., 
Giorgio et al. (2015a), Ling et al. (2015), and 
Deng and Pandey (2016)) is that the BTGP treats 
the upper limit  as an unknown parameter, 
which has to be estimated from data. 

Maximum likelihood estimation of the 
BTGP parameters has been discussed in 
Fouladirad et al. (2023). 

In this paper, a Bayesian estimation 
procedure is proposed that allows to directly 
incorporate into the inferential process various 
types of technological information on the 
observed degradation phenomenon that are often 
available in practical settings. In particular, the 
paper focuses on prior information formulated in 
terms of: a) the upper bound  of the degradation 
process, and b) the possible presence of an 
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inflection point in the mean degradation function. 
Bayesian inference on process parameters and on 
several useful functions of the parameters 
themselves, such as the mean remaining useful 
life and the residual reliability, is based on Monte 
Carlo Markov Chain (MCMC) methods. The 
prediction of the degradation process increment 
over a future time interval is also performed. The 
proposed approach is finally verified on a set of 
real data, originally given in Giorgio et al. 
(2015b), containing wear measurements of the 
liners of an 8-cylinder engine of a cargo ship, 
already analyzed in Fouladirad et al. (2023). 

2. The bounded transformed gamma process 
The bounded transformed gamma process 
(BTGP)  is an asymptotically 
bounded above monotonic increasing Markovian 
process with dependent increments (Fouladirad et 
al. (2023)). Being Markovian, the BTGP is 
completely defined by the conditional probability 
density function (pdf) of its increment 

 over the time interval ( ), given the 
current state , that is defined as: 

 

 

 
where: 

�  is the upper bound of , 
�  is a non-negative, monotone increasing 

and differentiable function of the degradation 
level , defined over the domain , 
with  and , 

�  is the first derivative of  
evaluated at , 

� , 
�  is a non-negative, monotone increasing 

function, defined on the domain , 
with  and ,  

� , and 
�  is the complete gamma 

function. 

The functions  and  are called age 
and bounded state function. From (1), the 
conditional cumulative distribution function 
(Cdf) of , given , is: 

 

 

 

where  is the (lower) 
incomplete gamma function. From (1) and (2), by 
replacing ,  and 

 by , , and , 
respectively, the following pdf and the Cdf of the 
degradation level  of a new unit, being 

, are readily obtained: 
 

 

 

respectively. In the following, the BTGP with: 

 

and . 

will be adopted, which in Fouladirad et al. (2023) 
it showed to provide, within the classical 
approach, a good fit for the wear data that will be 
the object of the numerical application discussed 
in Section 6. From (5), we have that: 

 

 

 

The mean and variance of , as well as 
the conditional mean and variance of 

, given , are not in closed form, and 
require univariate numerical integrations: 
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Figure 1 shows the behavior of the mean 

function  of the BTGP with the bounded 
state and age functions in (5), for , , 

, and selected values of , say , 0.9, 
1.0, 1.1, 2.0, and 3.0. When  (i.e., when  
is convex), the mean function has an inflection 
point. Otherwise, the mean function is concave, 
and its first derivative with respect to  decreases 
monotonically with . For  close to 1, the mean 
function initially grows almost linearly. 
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Fig 1. The behavior of the mean function of the BTGP, 
for , , , and selected values of , say 

, 0.9, 1.0, 1.1, 2.0, and 3.0. 
 

Degrading units are conventionally assumed 
to fail when their degradation level exceeds a 
threshold level . Then, for monotonically 
increasing degradation processes, the unit lifetime 

 is defined as the operating time to the first, and 
sole, passage beyond . In the case of bounded 
degradation processes, the threshold  is clearly 
smaller than the upper bound .  

Likewise, the remaining useful life (RUL) 
 of a unit which is unfailed at the operating time 

, say ), is defined as the 
further operating time the unit of age t will spend 
to exceed the threshold level . Consequently, 
based on this definition, the RUL  of a unit that 
at  is already failed is equal to 0. 

Then, from the conditional pdf (1) of the 
degradation increment , the residual 
reliability, here intended as the conditional 
probability that the RUL of the unit , given its 
state  at the current age , exceeds the 
time , is given by: 

 
 

 

 
From the residual reliability (11), replacing 

 and  by  and , 
the reliability function of a new unit results in: 

 

Finally, the mean RUL  
and the mean lifetime  of a new unit are: 

 

 

 

3. The likelihood function 
Let us suppose that  identical units operate 
under the same conditions and that the unit  (

) is inspected  times at the ages  (
). Moreover, let  denote the 

degradation level of the unit  measured at the 
inspection time . 

From (1), the conditional pdf of 
, given , is: 

 

 

 

where , and (from (5)) 
, 

, and 
, with  for all . 

Then, the likelihood function relative to the data 
 is: 
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where  

4. The Bayesian inferential procedure 
A Bayesian inferential approach is here proposed 
which allows the analyst to incorporate into the 
inferential procedure some types of prior 
information on the observed degradation 
phenomenon that he may possess. Both vague and 
informative priors are proposed, depending on the 
amount of prior information that is supposed to be 
available. In particular, since the upper bound  
is a physical characteristic of a bounded 
degradation process, it seems very reasonable to 
assume that the analyst may possess prior 
information on  stemming from past experience 
with similar degrading units. Obviously, a first 
information on  is that it must be greater than the 
maximum observed degradation level . 
Further information on  may be available, 
depending on the application. In the following, 
several prior distributions on  are proposed, 
reflecting different degrees of knowledge.  
(i) No information is available on , except that 

. Thus, the improper (vague) 
decreasing prior is used: 

 
(ii) A lower bound , with , can be 

formulated, and the improper decreasing 
prior is used: 

 
(iii) An interval ( ) of equally probable 

values for , with , can be 
formulated on , and hence the uniform 
prior over the interval ( ) is used: 

 

(iv) The analyst can formulate a prior mean 
 and variance  on , still under the 

constraint . Then, the following 3-
parameter gamma distribution, with location 
parameter equal to , is used: 

 

 

where the parameters  and  can be 
computed as  and 

. 
In addition, it is plausible to suppose that the 

analyst possesses information on the presence of 
an inflection point. This information can be 
converted into a prior information on  of 

 because, as discussed in the Section 2, the 
mean function has an inflection point when  is 
larger than 1 (and the larger , the more evident 
the inflection is), while it is concave when  is 
lower than or equal to 1 (and the smaller , the 
more marked the initial concavity of the mean 
function is). Thus, several prior distributions on  
are proposed in the following, reflecting different 
degrees of knowledge on the shape of the mean 
function . 
(i) No information on the shape of  is 

available, and hence the (improper) vague 
prior on  is used: 

 
(ii) The only prior information available is that  

 has no inflection point, and 
hence the uniform prior is used: 

 
(iii) The analyst knows that the  has no 

inflection point and is also able to formulate 
a prior mean  and a prior variance  
on , with . Then, the following beta 
prior is used: 

 

where the parameters  and  can be 
obtained by 

 and  . 
(iv) The only available prior information is that 

 has an inflection point, and hence 
the (improper) vague prior is used: 

 
(v) The analyst, besides knowing that 

 has an inflection point, can also 
formulate prior mean  and variance 

 of , with . Then, the following 
3-parameter gamma distribution, with 
location parameter equal to 1, is used: 
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where the parameters  and  can be 
computed as  and 

. 
Finally, we assume that no information is 

available on the other two process parameters  
and , and hence the uniform vague prior pdfs: 

 
over the intervals ( ) and ( ) are used for 

 and , respectively, where the values of  and 
 are sufficiently large.  

Assuming the prior independence of  
and , from the above suggested prior 
distributions, the joint posterior pdf of the BTGP 
parameters is: 

 
 

which can be used to formulate posterior 
estimates of any process parameter and function 
thereof. 

From (27), the posterior predictive pdf of the 
increment  of unit 
 over the future time interval , 

given , is given by: 

 

 

where 
, and from (1): 

 

 

 

with 
. 

From (28) and (29), the posterior mean of 
the (conditional) degradation increment 

 of the unit  during the future time 
interval  is given by: 

 

 

 

5. The Monte Carlo Markov Chain procedure 
The Bayesian inferential procedure presented in 
the Section 4 would require multivariate 
integrations to be numerically performed. 
However, this approach is often unfeasible and/or 
highly time consuming in practice. Therefore, a 
Monte Carlo Markov Chain (MCMC) method for 
posterior sampling is proposed to reduce both the 
computational burden and the execution time of 
the routines. At this aim, the software package 
OpenBUGS (Lunn et al. (2009)) is used to 
implement the MCMC technique based on the 
adaptive Metropolis algorithm. In particular, we 
first generate a four-dimensional pseudo-random 
vector sample of size , that is 

 ( ), from the joint 
posterior pdf  in (27) after a 
sufficiently large burn-in period performed to 
make negligible the influence of the starting point 
of the numerical procedure. 

Hence, from the vector sample , the 
posterior mean and variance, and the  
highest posterior density (HPD) interval of each 
parameter are estimated. In particular, the 
posterior mean is given by the mean of the 
corresponding elements of the posterior sample, 
for instance 

 

 

whereas the  HPD interval is obtained by 
ordering the posterior sample and selecting the 
shortest interval containing the fraction  
of the sample. 

The posterior sample of any function  
of the BTGP parameters, such as the mean 
degradation in (7), the residual reliability in (11) 
or the mean lifetime in (14), is simply given by 

 ( ), from which the 
posterior pdf, the posterior mean, and the HPD 
interval of  are easily computed. 
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Table 1. Wear  [mm] accumulated by liner  up to the inspection time  [h]. 

         
1 11,300 0.90 14,680 1.30 31,270 2.85   
2 11,300 1.50 21,970 2.00     
3 12,300 1.00 16,300 1.35     
4 14,810 1.90 18,700 2.25 28,000 2.75   
5 10,000 1.20 30,450 2.75 37,310 3.05   
6 6,860 0.50 17,200 1.45 24,710 2.15   
7 2,040 0.40 12,580 2.00 16,620 2.35   
8 7,540 0.50 8,840 1.10 9,770 1.15 16,300 2.10 

For example, the posterior sample  
( ) of the mean , given in (7), 
is: 

 

 
from which, for example, the posterior mean 
results in: 

 

Likewise, the posterior sample  (
) of the mean lifetime  of a new unit 

given in (14) is computed as: 

 

from which, for example, the posterior mean 
 results in: 

 

The posterior (predicted) sample  
( ) of the (conditional) degradation 
increment  of the BTGP, given 

, was obtained by using the 
conditional pdf (1). In particular, by applying the 
method of composition (see, e.g., Tanner (1996)), 
the posterior sample  ( ) is 
obtained by using a two-steps procedure: at first, 
a pseudo-random sample  ( ) 

of size M is generated from a gamma distribution 
with unit scale parameter and shape parameter 

, and 
then, from (6), each element  is 
transformed into the element  as follows: 

 

Then, from the posterior sample  
( ), the posterior pdf, the posterior 
mean and variance, and the  HPD interval 
of  are easily derived. 

6. Numerical application 
Let us now consider the wear measurements 

of the liners of an 8-cylinder Sulzer marine 
engine, given in Table 1. Observed data are 
depicted in Figure 2, where data pertaining to the 
same path are connected by lines. 
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Fig. 2. Observed wear paths of the liners. 
 

Based on a contractual clause, it is assumed 
that  mm. This wear dataset was previously 
analyzed in Fouladirad et al. (2023) within the 
BTGP with  and 
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 and the maximum likelihood estimates 
(MLEs) were there obtained.  

In order to perform the Bayesian procedure, 
we have to formulate the prior pdfs for the BTGP 
parameters. We then assume that the analyst, on 
the basis of previously observed similar wear 
phenomena, knows that: i) the upper bound  is 
surely larger that  mm, and ii) the mean 
degradation function has an inflection point, so 
that . 

Moreover, from previous experiences, the 
analyst can also provide the prior values of the 
mean and variance of , that is  mm 
and  mm2, and of , 
that is  and . 
Thus, the analyst chooses: 
� the 3-parameter gamma prior (20) on , with 

parameters  
and , and 

� the 3-parameter gamma prior (25) on , with 
parameters  
and . 

The prior parameters  and  are set equal 
to 200 and 50,000 h, respectively, so as to ensure 
that these priors are “flat” over the entire region 
supported by the likelihood. Thus, the joint prior 
pdf of  and  is: 

 

 
 

with , ,  mm, 
, and .  

In order to collect posterior samples of 
 composed by M = 105 four-

dimensional vector elements, we used a burn-in 
period of 105 iterations and a thinning interval 
equal to 200, guaranteeing very good 
approximations. The posterior means of  
and  are  h, 

,  and 
 mm, while the 

corresponding 0.90 HPD intervals are (1509 h, 
3820 h), (1.201, 1.568), (9.710, 30.49), and (4.300 
mm, 4.907 mm), respectively. For a comparative 
purpose, the MLEs of  and , given in 
Fouladirad et al. (2023), are  h, 

,  mm, and  mm, 
whereas the approximate 0.90 confidence 

intervals are (1353 h, 5314 h), (1.119, 1.838), 
(8.03, 43.13), and (4.3 mm, 5.506 mm), 
respectively.  

Figures 3 and 4 show the posterior means, 
the empirical estimates, and the 0.90 HPD 
intervals of  and . 
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Fig. 3. Posterior mean, empirical estimate, and 0.90 
HPD intervals of the mean degradation level. 
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Fig. 4. Posterior mean, empirical estimate, and 0.90 
HPD intervals of the variance of the degradation level. 
 

Both the posterior mean of  and 
 in Figures 3 and 4 fit very well the 

corresponding empirical estimates. 
Figure 5 shows the estimates of the residual 

reliability (11) of the liners #3 and 5, given the 
degradation level =1.35 mm and 3.05 mm at  
equal to  h and 37,310 h, respectively. 
Liners #3 and 5 have been chosen because they 
are the liners with the lowest and the highest 
degradation level, at the last inspection time. 

In Table 2, the posterior mean and the 0.90 
HPD interval both of the lifetime  of a new 
liner and of the RUL of the liners #1-8 are given. 
For a comparative purpose, the MLE of  is 
109,994 h, whereas the MLEs of the mean RUL 
of the liners #3 and 5 are 95,542 h and 72,836 h, 
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respectively. Thus, the Bayes method provides 
more pessimistic estimates of  and RUL.  
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Fig. 5. Posterior mean of the residual reliability 

 of the liners #3 and 5. 
 

Table 2. Posterior mean and 0.90 HPD interval of the 
lifetime of a new liner and of the RUL of the liners  

Liner Posterior mean [h] 0.90 HPD interval [h] 
New 97,264 (64,448 ,  127,390) 
#1 65,463 (33,884 ,  94,441) 
#2 77,215 (44,985 ,  107,281) 
#3 83,126 (51,043 ,  113,753) 
#4 67,997 (36,927 ,  98,134) 
#5 60,211 (29,978 ,   88,571) 
#6 75,040 (43,270 ,  105,370) 
#7 77,009 (44,660 ,  107,496) 
#8 79,136 (46,476 ,  109,399) 

 
Finally, Figure 6 shows the posterior 

predictive pdf (28) of  during 
the future time interval of width  h, 
relative to the liners #3 and 5. 
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Fig. 6. Posterior pdf of  for 

 h, of liners #3 and 5. 

7. Conclusions 
In this work, a Bayesian inference procedure for 
the bounded transformed gamma degradation 
process (BTGP) has been proposed, when some 
prior information on the upper bound for the 
degradation level and on the shape of the mean 
degradation function are assumed to be available. 
The use of different prior distributions, modelling 
different degrees of information on the bounded 
degradation process under study, has been 
proposed. Computations have been performed by 
adopting a Monte Carlo Markov Chain technique. 

The posterior distribution of the parameters 
of the BTGP and of some relevant functions 
thereof have been derived. From these posterior 
distributions, the posterior mean and the 0.90 
highest posterior density interval have been 
obtained. Prediction of the degradation increment 
over a future time interval has been also 
addressed. The application of the proposed 
inferential procedure to a set of real wear data of 
liners of an 8-cylinder marine engine, shows the 
feasibility of the suggested Bayesian approach. 
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