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Scoring-based systems are used worldwide to assess safety and security risks. Due to their ease of use, qualitative 
and semi-quantitative metrics are very popular. However, there may be the possibility that these scores do not 
accurately reflect the real risk, as was e.g. shown by Braband (2008) or Krisper (2021). In the worst case, this can 
lead to a misguided investment in measures. To avoid this, an adjustment of the scoring to a quantitative metric is 
required. The examples of the semi-quantitative Harnser metric and the quantitative vulnerability metric of Lichte 
et al. (2016) from physical security – in this work called intervention capability metric (ICM) – are used to show in 
this paper how to transfer a well-defined performance mechanism for quantitatively calculating physical 
vulnerability into consistent scores. To enable the transfer, this paper performs a metrical analysis. The results of 
the Harnser metric are extended by estimated probability intervals and compared to the results of the ICM. Different 
types of scales are used. Subsequently, we analyze measures to align the results of these two metrics, such as 
modifying the assignment of scores to scale categories or adjusting the probability intervals behind the scores. As 
an output, the metrical analysis generates rating scales for the Harnser scoring system that can be used to replicate 
quantitative vulnerability values. The results contribute to making more risk-appropriate decisions. Finally, we 
critically evaluate possibilities and limitations of metrical adaptability and summarize results.  
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1. Introduction 
Scorings are simple tools to assess risks in a quick 
way. Scoring systems that use descriptors such as 
"likely" or "unlikely" are useful when evaluating 
complicated issues (Newsome, 2013). Simplicity 
is an important prerequisite for making better 
decisions (Gigerenzer, 2014). This assumes that 
what is generated by scorings is also appropriate 
for risk (Braband, 2008). In the worst case, this 
can lead to a misguided investment in measures. 
To avoid this, an adjustment of the scoring to a 
quantitative metric is required (Krisper, 2021).  

On the example of the semi-quantitative 
Harnser metric and the quantitative vulnerability 
metric of Lichte et al. (2016) from physical 
security – in this work called intervention 
capability metric (ICM), it is shown in this paper 
how to transfer a performance mechanism for 
quantitatively calculating physical vulnerability 
into consistent scores so that both assessments 
result in comparable vulnerability ratings.  

For enabling the transfer, this paper 
performs a metrical analysis. The results of the 

Harnser metric are extended by estimated 
probability intervals and compared to the results 
of the ICM. Different types of score linkage and 
scales are used. Subsequently, measures to align 
the results of these two metrics are analyzed, such 
as modifying the assignment of scores to scale 
categories or adjusting the probability intervals 
behind the scores. As an output, the metrical 
analysis generates rating scales for the Harnser 
scoring system that can be used to replicate 
quantitative vulnerability values.  

The remainder of this paper is structured 
as follows: Section 2 presents challenges using 
scoring-based metrics in comparison to 
quantitative metrics. As examples for scorings, 
the Harnser metric and the Failure Mode and 
Effect Analysis (FMEA) are described. Section 3 
includes our approach proposed to align results of 
the Harnser scoring to real vulnerability levels. It 
is divided into the definition of the reference 
model setup under investigation and conducting 
the actual metric analysis. For demonstration 
purposes, we show how to align different Harnser 
scoring scales to vulnerability values based on a 
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quantitative analysis. This paper makes a valuable 
contribution to making more risk-appropriate 
decisions. Finally, possibilities and limitations of 
metrical adaptability are critically evaluated and 
results are summarized. 
 
2. Background  
 
Physical security risk is classically assessed based 
on threat, vulnerability and impact (Lichte et al., 
2017). The focus in physical security risk 
assessment is placed on vulnerability and impact 
because: 
 
� threats are epistemic and therefore difficult to 

quantify. 
� vulnerability can be reduced by a defender 

investing in security measures. Quantitative 
metrics are available. 

� it is assumed that a defender can quantify the 
extent of physical damage. 

 
In the quantitative ICM, the interplay between the 
intrusion time of an attacker and the reaction time 
of a defender is assessed via the interaction of 
protection, observation and intervention. In order 
to take uncertainties about the performance of 
security functions into account, probabilistic 
density functions are assigned to the assessment 
parameters.  

The quantitative calculation of 
vulnerability requires the confident use of 
mathematical statistics and probability theory. A 
simpler variant for calculating physical 
vulnerability is proposed in the semi-quantitative 
scoring system Performance Risk-based 
Integrated Security Methodology (PRISM) of the 
Harnser Group (Harnser, 2010). By using the 
PRISM, hereafter only referred to as the Harnser 
metric, the assessment parameters are scored 
between "1" (low) and "5" (high) and summed. 
This results in a total score range from "3" to "15”: 
"15" indicates that vulnerability is very low and 
"3" indicates that vulnerability is very high.  

As qualitatively described in Termin et 
al. (2022) and criticized in Termin et al. (2021), 
there are biases compared to the ICM: If 
protection and intervention are good, but 
observation is very poor, then the Harnser 
vulnerability score would be in the midrange. 
However, according to the ICM, the system 
would be highly vulnerable, because an 
intervention can only succeed if an attacker is 
detected in time - i.e. quickly enough. The 
Harnser metric does not differentiate between 
individual barriers as the ICM does.  For another, 
protection, observation and intervention are 
interpreted as equal contributions. As explained 
before, however, this is not reasonable. A similar 
phenomenon of deviations is found in other semi-

quantitative metrics, such as Failure Mode and 
Effects Analysis (FMEA) (Braband 2008).  

A total of three parameters, occurrence, 
significance, and detection, are scored between 
"1" (low) and "10" (high) and multiplied together. 
The product is the so-called Risk Priority Number 
(RPN). The highest achievable value is 
(10x10x10 =) "1000" (maximum risk), while the 
next lowest value is "900" (10x10x9).  

If we now look at the minimum score 
instead of the maximum score, we notice that the 
risk for small scores scales differently than for 
large scores. The smallest risk is (1x1x1 =) "1", 
the next highest (1x1x2 =) "2". The distance 
between these two scores is "1", for the two values 
of the maximum expression "100". Since this is a 
semi-quantitative approach with an ordinal scale, 
it lacks a reference point that allows for 
proportionality.  

However, FMEA scoring suggests that 
risk behaves differently at high scores than at 
lower scores (Braband, 2003). Whether this 
actually corresponds to real conditions must be 
critically questioned (Krisper, 2021). In addition, 
the full "bandwidth" of possible results between 
"1" and "1000" cannot be achieved in FMEA, i.e., 
for example, "950" is never reached by the given 
parameter combinations. This is a general 
problem with scoring-based approaches, since 
they only allow a defined, computationally 
prescriptive space of outcomes. In Braband 
(2003), the systemic weaknesses of FMEA are 
summarized as follows: 
 
� Occurrence, significance and detection are 

characteristics on an ordinal scale, which 
means that multiplication is not defined 
mathematically.  

� Similar risks should be assigned the same 
RPN. In FMEA, this cannot be guaranteed. 

� Risks with the same RPN are not accepted to 
the same extent. 
 

In order to mitigate the systematic weaknesses, 
the following three requirements are therefore 
placed on a risk scale for determining the RPN:  
 
� "Rational scaling. The scaling of the 

evaluation tables must be at least 
approximately rational, i.e., the bandwidths b 
of the classes should be approximately equal.  

� Monotonicity. If the risk for scenario i is less 
than the risk for scenario j, the RPN for 
scenario i must be less than or equal to the 
RPN for scenario j. 

� Accuracy. If the RPN for scenario i is equal 
to the RPN for scenario j, the risk for scenario 
i and the risk for scenario j should be 
approximately equal." (Braband, 2012). 
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Depending on the metric, there are different ways 
in which information is collected and processed. 
As highlighted in Krisper (2021), an analysis of 
the quality of metrics can be conducted by 
measuring the prediction strength of a metric. A 
further discussion of the advantages and 
disadvantages of using scores especially in the 
context of risk matrices is presented, for example, 
in Julian (2011). The goal of this paper is to be 
able to evaluate and optimize the quality of the 
Harnser metric used to calculate physical 
vulnerability compared the quantitative ICM.  
 
3. Approach 
 
A sharp vulnerability criterion, as can be 
objectively mapped in the Intervention Capability 
Metric (ICM), cannot be implemented with the 
Harnser metric. The problem with using semi-
quantitative metrics is stated in Krisper (2021) as 
follows: "A problem here is that by transforming 
quantitative values into a domain and scale, which 
only supports ordering relations, we lose the 
ability to do reasonable arithmetic, estimate 
uncertainty, or do any sophisticated mathematical 
analysis."  

The Harnser scores do not have an 
underlying metric based on time, as is the case 
with ICM according to Lichte et al. (2016). For 
example, Harnser score "5" is defined as "There 
is no capability to prevent this scenario from 
occurring and causing worst-case consequences" 
(Harnser, 2010).  

The background chapter already points 
out in qualitative form the deviations between the 
additive approach according to Harnser and the 
probabilistic approach according to Lichte et al. 
(2016). From a scientific perspective, questions 
arise as to how large the distortions between the 
two metrics actually are and what possibilities 
there may be to reduce them. In this chapter, a 
mathematical analysis is performed to answer this 
question.  

The differences between the 
vulnerability scores of the two metrics are 
calculated using the Harnser metric and variation 
in means and standard deviations in the ICM. 
Measures to reduce the metric differences are then 
examined. 
 
3.1. Reference Model Setup 
 
For the metrical analysis, the following reference 
model setup is chosen: One barrier and one asset 
are considered. The barrier must be overcome by 
the attacker in order to reach the asset. The barrier 
has properties of protection, observation and 
intervention. The performance of the barrier 
functions is evaluated in case of an attack.  

For the determination of vulnerability, 
quantitative counterparts are formulated for each 
Harnser score in the ICM, i.e. a protection score 
(P), an observation score (O) and an intervention 
score (I) are assigned to a mean and standard 
deviation of normal distributed parameters, as in 
this paper assumed (see Table 1). In actual 
practice, the defined levels can look quite 
different. In this context, experts can be consulted 
to define appropriate levels in the quantitative 
metrics that correspond to real-world conditions. 
 

Table 1. Mapping of Scores to Performance 
Mechanisms  

P ICM 1 O ICM 1 I ICM 1 

1 μ = 15 
σ = 30 1 μ = 135 

σ = 30 1 μ = 135 
σ = 30 

2 μ = 45 
σ = 30 2 μ = 105 

σ = 30 2 μ = 105 
σ = 30 

3 μ = 75 
σ = 30 3 μ = 75 

σ = 30 3 μ = 75 
σ = 30 

4 μ = 105 
σ = 30 4 μ = 45 

σ = 30 4 μ = 45 
σ = 30 

5 μ = 135 
σ = 30 5 μ = 15 

σ = 30 5 μ = 15 
σ = 30 

 
The standard deviations are set to 30 (seconds) for 
all levels. The protection time increases as the 
score increases, whereas the observation time and 
intervention time each become shorter as the 
score increases. ICM 1 represents ICM variant 
number one. In the Harnser metric, all three 
parameters are always scored. 

To enable a comparison between the 
scoring result and the quantitative result, 
presumed probability intervals are written behind 
the score totals (Newsome, 2013). Since it is not 
yet known a priori how the intervals are to be set 
in order to replicate the quantitative results as best 
as possible, an equal distribution is assumed: the 
100 % (probability of vulnerability) is divided 
equally between the categories of the Harnser 
scale (compare Table 2). 
 

Table 2. Harnser Scale  
Vulnerability 

Score 3 4 … 13 14 15 

Lower Value 0.924 0.847 … 0.154 0.77 0 

Upper Value 1 0.924 … 0.231 0.154 0.77 

Mean Value 0.962 0.8855 … 0.1925 0.462 0.385 
 
In total all possible (5x5x5 =) 125 permutations 
are considered. In the case of the ICM, 36 variants 
are calculated, whereby one variant considers the 
consideration of discrete values approximately. 
The configurations ICM 1 - ICM 35, on the other 
hand, were based on density functions. The 
standard deviations are defined in Table 3. The 
mean values of these variants are identical to 
those in Table 1. 
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Table 3. ICM Variants (with μ for each score from 
Table 1) 

ICM σ_P σ_O σ_I 
Dis-
crete 0.0000001 0.0000001 0.0000001 

1 30 30 30 

2 30 30 60 

3 30 30 90 

… … … … 

27 90 90 90 

28 100 100 100 

29 50 50 50 

30 10 75 100 

31 1 40 1 

32 10 40 120 

33 150 150 150 

34 300 300 300 

35 10 100 100 
 
The higher the number of the variant up to No. 27, 
the higher the scatter used. Variants 28 to 36 
represent configurations where further metric 
modifications are tested. The result of using the 
ICM is a quantitative vulnerability value between 
0 (minimum) and 1 (maximum) for each 
permutation, which can be mapped to Harnser's 
vulnerability results based on the scale in Table 2. 
For the analysis runs, the following steps are 
generally performed: 
 
� Plot of vulnerability results Harnser versus 

ICM according to permutation. 
� Plot of the Harnser vulnerability results: The 

results are sorted according to the Harnser 
vulnerability mean, i.e. the ICM results are 
"taken along" and sorted to the sorted 
Harnser mean values. The result in each case 
is  curve representing vulnerability values. 

� Plot of the amount between the Harnser mean 
values and the ICM values. 

 
The following analyses are performed: 
 
� Calculating vulnerability over the sum of the 

scores, using a 13-tier scale. 
� Calculating vulnerability score over the sum 

of the scores, using a three-tier scale. 
 

3.2. Calculating vulnerability over the sum of 
the scores 
 
A first object of investigation is to calculate how 
vulnerability changes when the following setup is 
defined: Two performance mechanisms are 
emphasized, while the third performance 

mechanism is expected to increase. Three variants 
are calculated. First, observation and intervention 
are held constant high while the protection is 
varied. Following the same principle, in variant 
two the observation is varied and in variant three 
the intervention is varied, while the other two 
performance mechanisms remain particularly 
pronounced. The ICM results in Figure 1 reveal 
that the third variant achieves the best 
vulnerability reduction. Variant one and two are 
identical in terms of vulnerability reduction and 
lower than variant one. 

It follows from this analysis that the 
Harnser metric does not distinguish between 
different resource distributions. For the ICM 1, 
the effect of a redistribution of resources can be 
demonstrated quantitatively. It should be noted, 
however, that this effect applies to ICM 1, taking 
into account the assumptions made. Depending on 
the properties of a barrier, the result for 
vulnerability may be different. 

Fig. 1. Plot of Permutations Harnser-ICM  
 
In a next step, the estimated probability intervals, 
which can be determined with the scale from 
Table 2 for each of the (5x5x5 =) 125 score 
combinations, are mapped to the quantitatively 
calculated results of the ICM. Then, the Harnser 
metric results and the ICM results are sorted by 
the magnitude of the Harnser scores (see Figure 
2).  
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Fig. 2. Results of the Calculated Permutations Harnser-ICM 
 

This mapping of results in a curve. While the 
Harnser results form a continuous curve of cubic 
progression with plateaus of probability intervals, 
the vulnerability results, which are ordered by 
Harnser values, jump. The ICM results form a 
discontinuous curve of limited growth. Two 
questions can be asked when examining Figure 2: 
Why do we have probability plateaus and why do 
the values of the ICM vulnerability values jump?  

To answer the first question, attention 
must be paid to the permuted scores: Protection, 
Observation, and Intervention are varied between 
"1" and "5" in every possible manifold, i.e., there 
may be, for example, once P = "2", O = "3", I = 
"5" or P = "5", O = "3", I = "2". The score sum 
and thus the assumed probability interval are the 
same in both cases. Figure 2 shows that score 
sums of the same value occur more often in the 
"middle field". To answer the second question 
about the jumping of the ICM values, a series of 
permutations, marked by a blue rectangle in 
Figure 2, is picked out as an example and 
examined more closely. 

The calculation results of the permuted 
variants are listed in Table 4 as an excerpt from 
the blue marked area shown in Figure 2. High 
values (red), medium values (orange) and low 
values (yellow) are marked as examples. The 
attributes high, medium and low refer to the 
considered range at the quantitative results 
considered here.  
 

Table 4. Excerpt of Calculated Permutations  
P O I Sum Low. Up. Mean ICM 1 

Vulnerab. 
1 4 5 10 0.385 0.462 0.4235 0.95367115 

1 5 4 10 0.385 0.462 0.4235 0.90338094 

3 4 3 10 0.385 0.462 0.4235 0.85309073 

3 5 2 10 0.385 0.462 0.4235 0.82195999 

4 1 5 10 0.385 0.462 0.4235 0.95367115 

4 2 4 10 0.385 0.462 0.4235 0.90338094 

4 3 3 10 0.385 0.462 0.4235 0.85309073 

 

The probability intervals, which are assumed 
behind the score sums of the Harnser metric, are 
sub-optimally chosen. The example of the 
comparison of Harnser vulnerability values and 
ICM 1-Vulnerability values can be used to 
illustrate that there are large distortions in certain 
parts.  

From the user's point of view, it would 
be beneficial to have a scale classification in the 
scoring system that ideally corresponds to the 
quantitatively calculated vulnerability values of 
the respective ICM variant. For this purpose, the 
progressions of both vulnerability curves are first 
analyzed qualitatively (see Figure 3):  

The jumps of the ICM vulnerability 
values are differently pronounced depending on 
the assigned Harnser plateau. While the 
fluctuations of the ICM vulnerability values at the 
beginning and at the end of the curve, which is 
composed of the Harnser plateaus associated with 
the score sums "3" to "15", are small, they are 
significantly larger in the middle field. 

Consequently, in order to be able to 
describe as far as possible all ICM vulnerability 
values by a presumed probability interval from 
the Harnser scoring, the choice of different 
bandwidths of presumed probability intervals 
written behind a score sum is necessary. Another 
insight is that the presumed probability intervals 
can have a common intersection, for example 
score "10": 0.98 - 1.00 and score "15": 0.99 - 1.00.  

Fig. 3. Probability Intervals to be changed 
 
In order to enable this scale fitting, an analysis of 
the vulnerability values of the sorted permutations 
is required. The smallest ICM vulnerability value 
within the length of a Harnser plateau is to be 
selected as the new lower interval limit of the 
corresponding score sum, the largest ICM 
vulnerability value accordingly as the new upper 
interval limit. The results can be seen in Table 5. 
 

Table 5. Redefined Harnser Scale for ICM 1 
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The plot of vulnerability scores for all 125 
permutations by size and Harnser mean in Figure 
4 shows successful alignment of the Harnser 
scoring system with ICM Variant 1.   

Fig. 4. Sorted Results of the Permutations Harnser (modified 
scale) – ICM 

 
The quantitatively calculated vulnerability values 
can also be sorted by size within the plateaus as 
spanned by the presumed probability intervals. 
This shows that the ICM 1 values are 
approximately equally distributed within the 
plateaus in Figure 5.   

Fig. 5. ICM 1 Values Sorted Within the Plateaus 
 

In specific use cases, however, it may be the case 
that the mean values and standard deviations of 
protection, observation, and intervention may be 
quite different from those in ICM 1. This can be 
seen when the vulnerability results of variant 30 
are plotted to the results in Figure 6 (compare 
Figure 5). 

Fig. 6. Sorted Results of the Permutations Harnser (modified 
scale for ICM 1) – ICM 1 and ICM 30 

For the variant ICM 30, a different Harnser scale 
is needed to map the quantitative results. The 
procedure to do this is identical to the one in the 
previous analysis: For each interval length of the 
Harnser plateaus, the respective largest and 
smallest ICM values are set as limits of the 
presumed probability intervals (see Table 6).   
 

Table 6. Redefined Harnser Scales for ICM 30 
V 

Score 3 4 5 … 14 15 
Lower 
Value 0.999 0.996 0.987 … 0.316 0.246 
Upper 
Value 0.999 0.998 0.993 … 0.36 0.246 
Mean 
Value 0.999 0.997 0.99 … 0.338 0.246 

 
As a result, the Harnser scale is now compatible 
with the vulnerability values of the ICM 30 (see 
Figure 7). The probability intervals based on the 
scoring now cover ICM 30 values, but no longer 
all values of ICM 1.  

To be able to consider the vulnerability 
values of both variants in the Harnser scale, it is 
necessary to analyze the ICM values of both 
variants: For each plateau (Harnser), the 
minimum ICM value over both calculated ICM 
variants is selected for the lower interval limit. 
For the upper interval limit, the maximum ICM 
value is selected for both calculated ICM variants. 

Fig. 7. Sorted Results of the Permutations Harnser (modified 
scale for ICM 30) – ICM 1 and ICM 30 
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The Harnser scale can be setup as defined in Table 
7. As can be seen in Figure 8, the Harnser scale is 
compatible to both ICM variants. 
 
Table 7. Redefined Harnser Scales for ICM 1 and 30 

V 
Score 3 4 5 … 14 15 
Lower 
Value 0.967 0.967 0.967 … 0.077 0.024 
Upper 
Value 1 1 1 … 0.36 0.246 
Mean 
Value 0.9835 0.9835 0.9835 … 0.2185 0.135 

Fig. 8. Sorted Results of the Permutations Harnser (modified 
scale for ICM 1 and ICM 30) – ICM 1 and ICM 30 

 
In today's standards, such as ISO/SAE 21434 
(Cybersecurity) or ISO 26262 (Safety), 
vulnerabilities are not sorted on a thirteen-tier 
scale as is done in the previous analysis. Instead, 
it is common to use a three- to five-tier scale 
(ISO/SAE, 2022). The question to be asked is how 
well a Harnser scoring with a three-tier rating 
scale can mirror results from the ICM, e.g. ICM 
1. For answering this question, the scale from 
Table 2 is redefined. Harnser score sums are now 
sorted on a scale with three categories; High, 
Medium, and Low (see Table 8).  
 

Table 8. Three-Tier Harnser Scale 
Categ. High Medium Low 
Sum "3-6" "7-10" "11-15" 
LIM 0.66 0.33 0 
UIL 1 0.66 0.33 
MI 0.83 0.495 0.165 

 
An equal distribution of 13 possible score sums 
on three categories is not possible, therefore it is 
defined that the score sums "3" - "6", "7" - "10" 
and "11" - "15" each belong to one category. The 
assignment of suspected probabilities to scale 
categories follows the same principle as before: 
High score sums indicate low-suspected 
vulnerability, whereas low score sums indicate 
high suspected vulnerability. Behind the 
categories, the suspected probability intervals are 
initially divided equally, meaning "High = 0.66 - 

1", "Medium = 0.33 - 0.66" and "Low = 0 - 0.33". 
All permutations are calculated and plotted again 
in Figure 9. 

Fig. 9. Sorted Results of the Permutations Harnser  
(three-tier scale) – ICM 1 

 
It can be examined how many ICM values 
actually lie in the presumed probability interval 
assigned to a plateau. For this purpose, in addition 
to the variant ICM 1, the configurations ICM 15 
and ICM 27 from Table 3 are considered. It is 
defined: An ICM value lies within a plateau if it 
lies on or within the interval boundaries. The 
results are plotted in Figure 10. In the third 
interval (here: length of plateau two), all ICM 
values lie within the plateau for all ICM variants, 
but all ICM values in the second interval lie 
outside. In the first interval, an increase in the 
dispersion of the ICM causes distortions in the 
approximation of both metrics. 

Fig. 10. Comparison of Matches ICM 1, 15 and 27 in Harnser 
 
As in the case before, this Harnser scale can also 
be made compatible with specific ICM variants. 
The same approach is used as before. For each 
plateau, the largest and smallest ICM values are 
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searched for. These are then defined as the upper 
and lower interval limits of the plateau. This 
results in the new scale division to Table 9. 
 

Table 9. Three-Tier Harnser Scale compatible with 
ICM 1 

Categ. High Medium Low 
Sum "3-6" "7-10" "11-15" 
LIM 0.99 0.8 0.1 
UIL 1 1 0.81 
MI 0.995 0.9 0.445 

 
What is striking in this context is that the width of 
the assumed probability intervals increases as far 
as the scale categories are reduced. With the 13-
tier scale, the widths of the probability intervals 
were still moderate. In the case of the three-tier 
scale, however, the probability intervals behind 
the scale categories are quite large.  

If the Harnser scoring is used and the 
result is, for example, a vulnerability score of 
"12", then a real vulnerability of about 0.1 to 0.81 
is present. At this point, it must be critically 
questioned to what extent this scale classification 
helps users to allocate limited resources to 
security measures. 

 
4. Summary 
 
When using scores on an ordinal scale, 
mathematical operations are undefined, 
consequently they cannot be used for quantitative 
calculations. A quantitative metric however - here 
using ICM as an example - can be used to translate 
a performance mechanism into consistent Harnser 
score levels. By this transfer, it is possible to 
replicate quantitative results of a concrete ICM 
variant with the scoring.  

This transfer has been performed once 
for the example of classical Harnser scoring with 
a thirteen-tier scale and once for Harnser scoring 
with a three-tier scale to show how metric 
alignment can succeed so that both assessments 
result in comparable vulnerability levels. 
Concluding, the approach proposed in this paper 
can reduce the incompatibility between the two 
metrics. In this paper, it is also demonstrated how 
the Harnser scale can be made compatible to 
several ICM variants.  

It can be shown that the widths of the 
presumed probability intervals become larger 
when fewer scale categories are used, i.e. users 
have to be careful when interpreting the scorings. 
In future research, we want to investigate the 
extent to which ICM values can be replicated by 
Harnser scoring when there are conflicting 
requirements to consider, e.g., all ICM values 
should lie in the plateaus of the Harnser metric 

versus the estimated probability intervals must not 
overlap.  

In addition, the approach described in 
this paper can help to adapt scoring systems in a 
wide variety of application areas in order to make 
decisions that are more appropriate to actual risk. 
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