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In the maintenance of multi-component systems, failures can cause downtime costs because immediate maintenance
may not be possible. This leads to the need to balance these downtime costs with periodic maintenance costs while
ensuring that the system operates with the requisite reliability, given its structural and economic dependencies.
Specifically, we formulate a Markov Decision Process model with two novel features. First, the system can have
any reliability structure, including structures in which it operates even if some components have failed. Toward this
end, the corresponding reliability function is obtained from a binary decision diagram, which significantly increases
the range of practical maintenance problems that can be addressed. Second, expected downtime costs are derived
from the reliability function for every possible state transition. A modified policy-iteration algorithm is then used to
determine the optimal policy to minimise the discounted total costs that consist of maintenance and downtime costs.
By varying the unit cost of system downtime, a range of Pareto-optimal policies is derived. Furthermore, we also
derive suggestions for changing structural dependencies so that the resulting maintenance costs would be lower.
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1. Introduction

Maintenance costs often constitute a signifi-
cant portion of the operating expenses of multi-
component systems. These costs can be reduced
by optimizing the timing of component replace-
ments, as shown in recent studies on deter-
mining optimal maintenance policies for multi-
component systems (de Jonge and Scarf, 2020;
Olde Keizer et al., 2017). However, multiple ob-
jectives may need to be considered when choosing
policies. Among these, the minimization of main-
tenance costs is typically prioritized, while other
objectives, such as maximization of reliability and
reduction of downtime, are treated as constraints.
Even in simplified single-objective formulations,
the components of the system often have eco-
nomic, structural, stochastic, and resource depen-
dencies that influence the optimality of the policy
(Olde Keizer et al., 2017). Previously, we applied
a Markov Decision Process (MDP) to minimize
discounted total maintenance costs under eco-
nomic and structural dependencies, with reliabil-
ity constraints and periodic maintenance instances

(Leppinen et al., 2025).
A system is available when it operates as in-

tended. Availability refers to the system’s operat-
ing probability. Many maintenance models con-
sider system availability (e.g., Geng et al., 2015;
Safaei et al., 2020). In contrast, during downtime,
the system is not operational due to failures or
maintenance. Structural dependencies can prolong
downtime (Geng et al., 2015). Downtime can be
either unplanned due to sudden failures or planned
due to scheduled maintenance. Unplanned down-
time is generally more costly than planned down-
time (e.g., Nguyen et al., 2015) because planned
maintenance, such as annual maintenance, can be
scheduled during low-demand periods.

System downtime is often modeled using a unit
cost of downtime that cumulates costs when the
system is not operational. However, when this unit
cost is included, total downtime or availability is
rarely reported, even though long-term downtime
costs can be uncertain, depending on factors such
as system utilization. Treating maintenance costs
and downtime as separate objectives establishes a
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trade-off of objectives. This can facilitate a more
informed selection among policies calculated with
different downtime costs. Thus, we extend Lep-
pinen et al. (2025) by comparing maintenance
policies based on total maintenance costs and
downtime.

Discrete-time MDP models have addressed sys-
tem downtime using a constant failure cost (An-
dersen et al., 2022; Olde Keizer et al., 2018) or
a unit cost of downtime (Xu et al., 2021; Zheng
et al., 2023). A constant failure cost is a con-
servative estimate if it is paid in full regardless
of the realized failure time between maintenance
instances (Zheng et al., 2023). Using a unit cost of
downtime requires calculating the expected failure
time between decisions. This has been calculated
for systems where k-out-of-n components must
function (Xu et al., 2021; Zheng et al., 2023). In
this paper, we derive downtime costs with the help
of binary decision diagrams (BDDs), which allow
the modeling of complex reliability structures in
discrete-time MDPs and thus broaden the scope
of practical maintenance applications.

Recent studies on MDP-based maintenance
scheduling models for multi-component systems
assume fixed structural dependencies and focus
on the analysis of optimal policy structure or
solution times (Olde Keizer et al., 2018; Xu
et al., 2021; Andersen et al., 2022; Zheng et al.,
2023). Few studies compare optimal policies with
varying structural dependencies (Nguyen et al.,
2022). To broaden the scope of MDP models,
we compare different maintenance policies across
structural updates, addressing both technical and
performance-related dependencies. This approach
aims to guide investments by identifying the most
effective structural changes to reduce downtime
or maintenance costs, particularly when resources
are limited.

Section 2 describes the MDP model with ex-
tensions. Section 3 demonstrates the use of the
model. Section 4 concludes the paper and suggests
future research avenues.

2. Maintenance model

2.1. System states, dependencies, costs

The multi-component system has m components
denoted by the set M = {1, ...,m}. The com-
ponents can only be replaced at predetermined
periodic maintenance instances, denoted by tk =

kΔ, k ∈ N, where the constant Δ is the length
of a maintenance interval. We denote replace-
ment decisions at instance tk with a binary vector
zk ∈ {0, 1}1×m where zki = 1 if component i
is replaced. The superscript k is omitted in the
notation if the index of instance tk does not need
to be specified. A finite number of replacement
decisions (at most 2m) is indicated by set Z: z ∈
Z.

We assume that the ages of the components are
known. The age of the component i at time tk

is aki , and the combination of components ages
with ak = (aki )i∈M . The components are always
replaced with new ones with zero age. Conse-
quently, the ages of the components are discrete
multiples of the maintenance interval.

In contrast to Leppinen et al. (2025), we allow
multiple components to fail between maintenance
instances. The failure probabilities of the com-
ponents depend on their age, according to some
continuous distributions. We assume that compo-
nent failures occur independently and are detected
instantly. Each component i has a binary failure
status fk

i at maintenance instance tk, where fk
i =

1 (fk
i = 0) indicates the component has failed (is

operational). The failure time tfi of component i
satisfies tfi ≤ tk if fk

i = 1. A failure state of
the system at instance tk is a binary vector fk =

(fk
i )i∈M that combines the failure statuses of the

components. There are 2m failure states. A failure
state where exactly the components X ⊆ M are
failed is denoted by fX .

The failure status of the system at instance tk

is denoted by the binary variable fk
s ∈ {0, 1}.

The system operates when fk
s = 0. This value

depends on the reliability structure and the failure
state of the system: fk

s = BR(fk) where BR(·)
is a binary function that describes the reliability
structure of the system. We model the function us-
ing a binary decision diagram (BDD) (for details,
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see Section 2.3). This is an extension of the model
of Leppinen et al. (2025) where only a series re-
liability structure is considered. The component i
is critical if its failure causes system failure when
all other components operate.

At instance tk, the state of the component i is
a combination of its age and failure status: ski =

(aki , f
k
i ), which contains relevant information for

maintenance decisions. Thus, the state of the sys-
tem is sk = (ak, fk), which is denoted for brevity
as s = (a, f). The state space of possible states is
denoted by S.

The structural and economic dependencies are
modeled using a directed graph G = (V,A),
where V = {0}∪D∪R represents the nodes, and
A represents directed arcs (x, y) with associated
costs (Leppinen et al., 2025). The root node 0

represents a fixed set-up cost c0 whenever main-
tenance is performed. The nodes in D represent
the disassembly actions, while the nodes in R
correspond to the replacement actions of compo-
nents, with |R| = m. Components may require
disassembly of other components prior to replace-
ment, and arcs define these dependencies. An arc
(x, y) with weight cxy indicates that the action
corresponding to node y can be performed at cost
cxy if x is also performed. If x is the root node,
y can be done independently. Thus, maintenance
costs depend on both structural dependencies and
the choice of simultaneous actions.

We assume that corrective replacement is more
expensive than preventive replacement. First, a
system failure surplus rs ≥ 0 is paid if the system
fails before replacements. The cost rs represents
a corrective surplus for the setup costs. Second,
a component-specific corrective replacement sur-
plus ri ≥ 0 is charged for every failed component
i that is replaced. Third, the unit cost of downtime
cd ≥ 0 determines the downtime cost if the system
is failed during the maintenance interval such that
the downtime cost is scaled from cd according
to the actual downtime, the duration between the
system failure and the next available maintenance
instance. Section 2.4 describes the calculation of
the expected system downtime.

2.2. System dynamics

The failure time tfi of the component i is assumed
to follow a cumulative distribution function Fi(t)

such that the component fails before age ai ≥ 0

with probability Fi(ai). If component i of age
aki is operational at maintenance instance tk, it
stays operational until the next instance with con-
ditional probability

Ri(a
k
i ) :=

1− Fi(a
k
i +Δ)

1− Fi(aki )
. (1)

This is the reliability of component i at age aki .
We assume that the reliability of every component
decreases with age.

We assume that the components age regardless
of whether they have failed or not. When a compo-
nent i has state (aki , f

k
i ) at a maintenance instance

tk, its state changes during the maintenance inter-
val (tk, tk+1) to state (ak+1

i , fk+1
i ) as follows:

• If the component is replaced, it transitions to
state (Δ, 0) with probability Ri(0) and to state
(Δ, 1) with probability 1−Ri(0).

• If the component is operational and is not re-
placed, it transitions to (aki +Δ, 0) with proba-
bility Ri(a

k
i ) and to (aki +Δ, 1) with probability

1−Ri(a
k
i ).

• If the component has failed and is not replaced,
it transitions to (aki +Δ, 1) with probability 1.

Thus, the state transition depends on which com-
ponents are replaced at tk and which fail during
the interval (tk, tk+1).

After replacements, the system state s = (a, f)

is given by the post-decision state sz = (az, fz),
where azi = 0 and fz

i = 0 if component i is
replaced, and azi = ai and fz

i = fi if com-
ponent i is not replaced. Let Mz ⊆ M denote
components that operate in the post-decision state
(fz

i = 0). From state sz the system transitions
to state s̃ = (ã, f̃). During the transition, every
component i ∈ M ages deterministically: ãi =

azi +Δ. However, state s̃ can have 2|Mz| different
failure states, as each operational component can
fail. The component i ∈ Mz fails with probability
1−Ri(a

z
i ).

If the state s̃ = (ã, f̃) is such that ãi = azi +Δ

for every i ∈ M and f̃i = 1 for every i /∈ Mz , this
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state s̃ is one of the reachable states of sz , denoted
by RE(sz). Each state sz has 2|Mz| reachable
states. The reachable states are mutually exclusive
and collectively exhaustive. The transition proba-
bility from state sz to state s̃ ∈ RE(sz) is

p(s̃|sz) =∏
i∈Mz

[
(1− f̃i)Ri(a

z
i ) + f̃i(1−Ri(a

z
i ))

]
. (2)

The probability of failure of a component depends
on its age, which is zero if the component is
replaced. Components that do not operate after the
replacement decision z do not impact the prob-
abilities of state transition because they evolve
deterministically: for all i /∈ Mz ãi = azi + Δ

and f̃i = fz
i = 1.

The reliability of the system in state sz is the
sum of all transition probabilities from state sz to
those reachable states s̃ ∈ RE(sz) in which the
system is operational

R(sz) =
∑

s̃∈RE(sz), BR(f̃)=0

p(s̃|sz). (3)

The system failure can be constrained by setting
a reliability threshold ρ ∈ (0, 1) that limits the
failure probability of the system

R(sz) ≥ ρ ∀sz ∈ S. (4)

As components age, their reliability decreases.
Thus, for every component-specific reliability
threshold ρi there is a maximum age amax

i such
that Ri(ai) < ρi when ai ≥ amax

i . Due to the
reliability threshold (4), the reliability of critical
components i must be Ri(ai) ≥ ρ. This deter-
mines the maximum ages for critical components.
In contrast, non-critical components j can age and
fail without causing the system to fail. However,
we also set a maximum age for these components
as they are required to operate with a high enough
reliability. This also serves to uphold the salvage
value of the system, for example. Furthermore, we
assume that failed components must be replaced
before they exceed their maximum age, even when
the system is operational. Thus, the age of every
component is bounded, and the system has 2m

failure states, resulting in a finite state space S.

The objective is to develop a feasible replace-
ment policy that minimizes expected overall costs
in the long term. At any given maintenance in-
stance, replacement decision z is feasible if

(i) post-decision state sz fulfills the reliability
threshold (4),

(ii) the system operates in the post-decision state:
BR(fz) = 0,

(iii) components are replaced before they reach
their maximum age,

(iv) structural dependencies are satisfied (as in
Leppinen et al., 2025).

The set of feasible maintenance actions for the
state s is denoted by Zs ⊂ Z.

2.3. Binary decision diagram

Binary decision diagrams (BDD) model failure
states of the system as paths between components
from the top of the diagram to the bottom. An
operational (failed) component corresponds to the
path to the left (right) of the component. If a
path ends in branch “1”, the system has failed;
and, conversely, if it ends in branch “0”, it is still
operational. We illustrate a BDD with an example
in Figure 1. The system has four components:
engine 1 (E1), engine 2 (E2), chassis (C), and
wheels (W). The reliability structure is shown on
the left of the figure, and the corresponding BDD
is on the right. For example, the system operates
if E1 is failed and other components operate. This
failure state corresponds to the path highlighted
in orange in Figure 1. We discuss the example in
more detail in Section 3.2.

E1

E2
C W

E1

E2

C

W

0 1

Fig. 1. Reliability structure and BDD of the example
system.

With BDD, the reliability of the system R(sz)
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in the post-decision state sz is a function of
the reliabilities of the components R(sz) =

RS(R1(a
z
1), ..., Rm(azm)) by combining the dif-

ferent paths, i.e., failure states, from the top of the
diagram to the bottom “0”. In a single path, the
component i operates with probability Ri(a

z
i ) or

fails with probability 1−Ri(a
z
i ). The probabilities

of the events that correspond to the failure statuses
along each path are multiplied, and the path prob-
abilities are added together. This is an alternative
formulation for equation (3). For example, for the
system in Figure 1 we get

R(sz) = RE1(a
z
E1)RC(a

z
C)RW(azW)+ (5)

(1−RE1(a
z
E1))RE2(a

z
E2)RC(a

z
C)RW(azW).

Furthermore, a closed-form representation of the
function BR(·), which maps the failure state to
the failure status of the system, is obtained by re-
placing R(sz) with 1−fs, replacing every Ri(a

z
i )

with 1− fi, and solving the equation with respect
to fs.

2.4. Expected system downtime

For component i whose nonnegative failure time
tfi follows a cumulative distribution function
(CDF) Fi(x), the expected failure time is

E(tfi ) =

∫ ∞

0

(1− Fi(x)) dx. (6)

Moreover, the failure times of components can be
conditioned on their failure statuses at consecu-
tive maintenance instances. If component i fails
between maintenance instances tk and tk+1, we
can scale the CDF between 0 and 1 on the interval
(tk, tk+1). In this case, the expected failure time
is

E(tfi ) :=

∫ Δ

0

(1− FΔ
ak
i
(x)) dx. (7)

where FΔ
ak
i
(x) :=

Fi(a
k
i +x)−Fi(a

k
i )

Fi(ak
i +Δ)−Fi(ak

i )
is the scaled

CDF of component i over the maintenance inter-
val it has failed.

System failure depends on the reliability struc-
ture. Using the BDD, the expected failure time of
the system can be calculated for every component
failure combination X ⊆ Mz that can occur dur-
ing a maintenance interval (tk, tk+1). We derive

the reliability of the system as a function of time,
Rs̃|sz (t), for t ∈ (tk, tk + Δ) when the system
transitions from the post-decision state sz to s̃

where f̃i = 1 for all i ∈ X ∪ M�
z and f̃i = 0

otherwise. Since we know the component failure
statuses before and after the state transition, the
reliability of each component during the state tran-
sition can be expressed as

R
s̃|sz
i (t) =

⎧⎪⎪⎨
⎪⎪⎩
1− FΔ

az
i
(t), if 0 = fz

i < f̃i = 1

1, if fz
i = f̃i = 0

0, if fz
i = 1.

(8)

If a component fails during the state transition (i ∈
X), its reliability is 1 − FΔ

az
i
(t). If component i

remains operational during the state transition, its
reliability is 1. If it has failed and has not been
replaced, its reliability is 0. We define

Rs̃|sz (t) := RS(R
s̃|sz
1 (t), ..., Rs̃|sz

m (t)). (9)

When definition (9) is applied in equation (6),
we can calculate the expected system failure time
during state transition from state sz to s̃ as

E(tfs̃|sz ) =
∫ Δ

0

Rs̃|sz (t) dt. (10)

The expected system failure time E(tfsz ) for post-
decision state sz is the expected value over state
transitions to each reachable state s̃ ∈ RE(sz):

E(tfsz ) =
∑

s̃∈RE(sz)

p(s̃|sz)E(tfs̃|sz ). (11)

Finally, the expected system downtime ED(sz)

of the post-decision state sz is the time from the
expected system failure time to the next available
maintenance instance ED(sz) = Δ− E(tfsz ).

The total costs depend on replacement deci-
sions, the failure statuses of the system and com-
ponents, and the expected system downtime costs.
Specifically, they consist of expected downtime
costs

cD(s, z) = cdED(sz) (12)

and maintenance costs

cM (s, z) = c(z) + rsBR(f) +
∑
i∈M

(rifi), (13)
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where c(z) is the cost of the replacement deci-
sion obtained from the directed graph with min-
imum cost arborescence (Leppinen et al., 2025)
and costs rs and ri are corrective replacement
surpluses. The state and action-specific cost is
c(s, z) = cM (s, z) + cD(s, z).

2.5. Solution algorithm

A policy U : S → Z is a function that prescribes
a feasible maintenance action portfolio z ∈ Zs

for each state s, that is, U(s) = z. We focus
on stationary policies that do not depend on the
current maintenance instance tk. The optimal pol-
icy minimizes the net present value of expected
maintenance and downtime costs in the long run.
The long-term costs of a discounted MDP are
represented by a value vector vU ∈ R

|S| where
vU (s) represents the expected long-term cost of
the policy U when the system is currently in state
s.

The model is solved with the Anderson-
accelerated Gauss-Seidel Modified Policy Iter-
ation Algorithm (AAGSMPI) (Leppinen et al.,
2025). Due to our extensions, this algorithm is
more time-consuming than Leppinen et al. (2025),
given that for every post-decision state, the num-
ber of reachable states is larger and the expected
system failure time (11) must be calculated.

3. Model illustration

3.1. Comparison of policies

We apply the model to a four-component system
with two engines (E1 and E2), a chassis (C), and
wheels (W) (Leppinen et al., 2025). In the first
instance, we assume that all components need to
operate for the system to operate. Thus, the relia-
bility of the system in any post-decision state sz

is R(sz) = RE1(a
z
E1)RE2(a

z
E2)RC(a

z
C)RW(azW).

Table 1 shows the maintenance costs for the com-
ponents and the Weibull distribution parameters.

The system has a positive economic depen-
dence with a fixed set-up cost c0 = 388. Its
technical structural dependencies are represented
in Figure 2 as a directed graph (Leppinen et al.,
2025). The components must be disassembled be-
fore replacements. Disassembly costs are added
to the weights of the arcs that lead to component

Table 1. Maintenance costs and failure distribution
parameters of system components

E1 E2 C W

Disassembly cost 23 28 167 0
Replacement cost 393 403 413 1000
ri 190 190 50 503
Weibull shape param. 5.1 5.1 5.5 4.0
Weibull scale param. 10.8 10.8 9.9 9.0

replacement nodes (E1, E2, C, W). Additionally,
both engines must be disassembled (node DE12)
before the chassis can be replaced. The chassis
and engines must be disassembled before replac-
ing the wheels. The system failure surplus is rs =
110.

0

E1

DE12

E2

C

W

416

39
3

51

431 403

580

1167

1000

Fig. 2. Directed graph of the 4-component system

We set the reliability threshold at 0.50, the
discount factor at 0.99, and the maintenance in-
terval length at 1. We calculate six optimal poli-
cies by varying only the unit cost of downtime,
cd ∈ {200, 2000, 4000, 10000, 20000, 65000}.
We simulate the policies over 150 consecutive
maintenance instances. In the initial state, the
components are new and operational with zero
age. After replacements, failure times are drawn
from component-specific Weibull distributions. A
component fails if its age exceeds the drawn fail-
ure time.

Downtime occurs whenever the system fails. In
this case, it will not be operational until the next
maintenance instance. For any maintenance pol-
icy, the total downtime is calculated as the cumu-
lative downtime over 150 maintenance instances,
and the corresponding downtime cost is computed
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by multiplying this downtime by the unit cost of
downtime. The total cost is the discounted sum of
the maintenance and downtime costs incurred over
150 maintenance instances.

The results in Figure 3 are averages of 10 000
simulations per policy. For example, with cd =

10000, the average total downtime, expressed as
unavailability, is 1.27%. The average total costs
are 53 729, of which 82% are maintenance costs
and 18% downtime costs. For comparatively high
unit costs of downtime cd > 2000, downtime
costs remain moderate due to frequent mainte-
nance, leading to reduced total downtime. Thus,
total costs increase primarily due to higher main-
tenance expenses.

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05
0.055

Average total downtime

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

A
ve

ra
ge

 to
ta

l c
os

ts

104

200
2000

4000

10000

20000

65000

Average total costs
Average total maintenance costs

Fig. 3. Average total costs separated into maintenance
and downtime costs and average total downtimes of
six policies calculated with six unit costs of downtime
labeled in the figure.

3.2. Updates in structural dependencies

We explore improving system maintainability by
relaxing disassembly requirements in three sce-
narios that alter the directed graph in Figure 2.

(1) Independent chassis replacement: The chassis
is directly connected to the root node with an
arc of weight 580. The arc between nodes C
and W is removed, and the updated weight of
the arc between nodes DE12 and W is 1000.

(2) Independent wheel replacement: Node W is
connected to the root node with an arc of
weight 1000, and the arc between nodes C and

W is removed.
(3) Independent replacement of chassis and

wheels: Nodes E1, E2, C, and W are di-
rectly connected to the root node with arcs of
weights 416, 431, 580, and 1000, respectively.

Optimal policies are calculated for the original
system and three scenarios with four unit costs of
downtime cd ∈ {200, 4000, 10000, 30000} and
the reliability threshold 0.83. Total maintenance
costs are assessed using the simulation described
in Section 3.1. The results are shown in rows 3–6
of Table 2.

Table 2. Average total maintenance costs are shown for
the original system, and the percentage decrease with
0.1% precision in average total maintenance costs are
shown for systems with reduced disassembly for the chas-
sis, wheels, or both, a system with parallel engines, and a
system with parallel engines and reduced disassembly.

cd 200 4000 10000 30000

System Average total maintenance costs

O: Original 41992 43924 44010 53883
C: Chassis 1.6% 0.3% 0.0% 0.0%
W: Wheels 2.2% 0.3% 0.0% 0.0%
C+W 2.6% 0.3% 0.0% 0.0%
P: Parallel engines 18.1% 21.8% 11.2% 13.2%
P+C+W 19.0% 22.5% 12.1% 14.2%

Compared to Figure 3, maintenance costs in-
crease when cd ≤ 4000 due to a stricter reliability
threshold. Reduced disassembly leads to lower
maintenance costs when cd = 200 because engine
disassembly costs can be saved if the chassis or
wheels are replaced without engines. However,
the changes in maintenance costs are negligible
when cd ≥ 10000, indicating that the optimal pol-
icy suggests grouping replacements. Thus, it can
be difficult to justify implementing the changes to
the disassembly requirements, especially if down-
time costs are high.

We further improve the system’s maintainabil-
ity with a parallel engine configuration. Now, the
system operates even if one of the engines has
failed. The reliability of this system in any post-
decision state sz is given by equation (5). Optimal
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policies are calculated for the system with parallel
engines and for the system combining parallel
engines with reduced disassembly requirements
using the four unit costs of downtime. The reli-
ability threshold is 0.83 for the system and 0.50

for non-critical engines. Percentage decrease in
cumulative maintenance costs are shown in rows
7–8 of Table 2.

Maintenance costs are lower when a single en-
gine failure does not cause the system to fail.
After engine parallelization, reduced disassembly
also provides minor cost savings. In particular,
increasing cd from 200 to 4000 results in simi-
lar total maintenance costs (as 0.819 · 41992 ≈
0.782 · 43924 when comparing the values from
rows 3 and 7 of Table 2). This implies that the
two policies are similar among the states that the
system is most likely to reach and that the other
parameters have a more significant impact on the
structure of the optimal policy than the unit cost of
downtime. However, maintenance costs increase
with cd ≥ 10000.

4. Conclusions

We have developed an optimization model for
multi-component systems that accounts for main-
tenance and downtime costs as well as economic
and structural dependencies. In keeping with intu-
ition, more preventive maintenance is carried out
when the unit cost of downtime is high, but ex-
ceptions may occur, as observed with the system
with parallel engines. Our model is novel in that it
guides optimal system decisions in view of main-
tenance and downtime costs in the presence of
structural dependencies and reliability constraints.
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