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Performing an optimization task on a complex system can be challenging when input variables are not completely
known and when there is inherent randomness in the system response. The first step is therefore to gather
information to reduce these uncertainties. In this paper, we use a rejection algorithm based on approximate Bayesian
computation to infer input distributions from a limited number of output observations. We define informative
metrics to estimate the likelihood of each input variable using a computer model of the real system and variance-
based sensitivity analysis. Further, we identify optimal control parameters accounting for both performance and
probabilistic constraints. We utilize neural network surrogates to efficiently approximate key relationships, evaluate
failure probability, and enable gradient-based optimization approaches.
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1. Introduction X, = (X4, Xa,) that can be described
by a multivariate random variable.

e A three-dimensional epistemic variable
X, = (Xe,, Xe,, Xe,) whose true value
X} is unknown.

e A three-dimensional control variable
X, = (X¢,, Xe,, X, ) that can be cho-
sen when manipulating the system, con-
trary to X, and X..

1.1. Challenge overview

This paper presents our answer to the 2025 UQ-
challenge on optimization under uncertainty pro-
posed by NASA and DNV. A detailed description
can be found in Agrell et al. (2024). The goal of
the challenge is to stimulate the development of
methods to perform optimization tasks for com-
plex systems with critical applications where in-
puts are not completely known. It is divided in
two problems : Problem 1 aims at defining an un-

The model response also depends on an aleatory
variable w representing seed-to-seed uncertainty.

certainty model on the system input, then building
prediction intervals of the system output; Problem
2 consists in optimizing system’s control based
on an objective function, under constraints on the
system output.

1.2. System and variables definition

We study a real system whose response Y depends
on an input vector X € [0, 1], composed of :

e A two-dimensional aleatory variable

The response itself is a six-dimensional time se-
ries (yq,...,¥g), with time ¢ € [0, 1]. The time
series are discretized in m = 60 time steps such
that the response for output dimension ¢ is 'y, =
yf”,...,ygm), with ¢4 = 0O and ¢,, = 1. In
order to answer the challenge, we get a budget
of N = 10 samples of system responses Y, for
which we can choose the control variable X..
When calling the real system, X, is sampled from
its unknown distribution and X, takes its true and
unknown value X?. A number of K = 100 repe-
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titions are obtained for each sampled realization
of the control variable, which results in a total
of N x K = 1000 system outputs. In the next
sections, j = 1,..., N will index the X, values,
k = 1,..., K the repetitions and i = 1,...,6
the output dimension considered. As an example,
yr
th repetition for the j-th X, values. In addition
to the real system, we also have at our disposal
a computer model reproducing the system’s re-
sponse. The model can be used without limits by

¥ is the i-th dimension time series of the k-

specifying X,,, X., X, as well as the random seed
in the form of an integer s.

1.3. Approach

We will first study the computer model’s behavior
in section 2. Then, aleatory variable distribution
and epistemic variable set inference methodology
is discussed in section 4, then put into practice
with real system data in section 5. To finish with,
we perform an optimization under constraints in
section 6.

2. Model behavior understanding

The first step into the challenge is to assess quali-
tatively and quantitatively the computer model be-
havior, that is, the output characteristics and how
it is influenced by input variables. We identified
that the first three dimensions y;, y, and y; are
bounded (between 0 and 3.35). They can either be
a constant equal to those bounds, or a more noisy
time series in between. On the other hand, y,, y5
and y, are also positive, but not bounded, and can
reach high values.

We aim at quantifying the different effects
of inputs on output variance by estimating the
Sobol’ indices (Sobol, 2001). For each output
dimension and each input variable, the first or-
der and total order Sobol indices are estimated.
Both the indices for the output’s mean and stan-
dard deviation are estimated using the method
described in Saltelli et al. (2008). The Sobol’s
indices for the output mean show that it is mostly
driven by X,,, especially for the first three di-
mensions ¥y, y2 and ys : Its first order indices
are [0.95, 0.88,0.96,0.86,0.71,0.99] and total or-
der indices are [1.0,0.98,1.0,0.93,0.84, 1.0]. The
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Fig. 1. Sobol’ indices of the output standard deviation,

estimated with a total of 10° simulations.

control variables have a small effect on y4 and ys,
while no X, contribution was captured. Figure 1
presents the Sobol’s indices for the output stan-
dard deviation. The variance contributions for 1,
y2 and ys are much more distributed, and apart
from X,,, consist mostly of interaction effects.
On the other hand, the variance of yy4, y5 and yg
is mainly explained by X,, and X,,, with small
effects of X, and no effect of X,.

3. Validation tool by mockup system
simulator

The real system observations don’t allow for a
full assessment of our methods. For instance, we
cannot compare the estimated X, distribution or
X, set to their true values because only the system
output is observed. Therefore, we use what we call
a ’mockup system” : we arbitrarily assign a "true”
X, distribution and X, “true” values X7, then run
the computer model on /N = 10 controls and K =
100 repetitions for each. The resulting output is
treated as a real system observation. That way, we
can compare our inference with the known distri-
butions and values that were used to generate the
mockup system output. Another benefit is that the
mockup system allows to try developed methods
on several input configurations and therefore test
their robustness.

4. Uncertainty model

4.1. Approximate Bayesian Computation

Now that we have a better idea of the model’s
behavior, we tackle the first challenge’s problem,
that is, X, distribution and X, set inference. In or-
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der to do so, we choose to use Bayesian sampling
methods which are adapted to this configuration
where we have noisy and limited data. Denoting
by 6, either X,, distribution parameter or X, val-
ues, our goal is to estimate a posterior distribution

P(0]Yops) o P(Yo3s]6) P(6), (1)

where P(0|Yps) is the posterior distribution of 6
having observed Y5, P(Yops|0) is the likelihood
of observations given # and P(0) is the prior distri-
bution of #. However, due to the black box nature
of the system, it is difficult to estimate the likeli-
hood in our case. That’s why we lean towards Ap-
proximate Bayesian Computation (ABC) meth-
ods. The main idea of ABC is to find parameter
values for which simulated data Y;,,, is close to
observed data Y35, using a distance metric d that
is informative on 6(Bi et al. (2022)). We perform
the inference of 6 posterior using a version of
the rejection sampling algorithm(Lintusaari et al.
(2017)) : The distance is computed for a large
number of candidate parameters 6*, then the a%
for which it is the lowest are accepted, where « is
the acceptance rate.

4.2. Definition of distance metrics

Each input is assigned the summary statistics for
which its total Sobol’ indices are the highest. For
instance, the output mean will be used for X, in-
ference, while the standard deviation will be used
for X,, and X,.. Additionally, we can take advan-
tage of the multi-dimensionality of the output by
picking the relevant dimensions for a given input.
As an example, for X, inference we could focus
on the standard deviation of 34, y5, and yg that are
the most informative. We then define a distance
between simulations and observations which is the
mean Bhattacharyya distance between summary
statistic distributions. The Bhattacharyya distance
is a quantity measuring the overlap between two
distributions of density p and ¢ :

dB(p7q)=*log/X vp(@)g(x)de.  (2)

For each X, value and each output dimension, the
summary statistic distribution is computed from

the K repetitions thanks to a kernel density esti-
mation :

8] = kde ({s (yfk)}k:11(> . 3)

where s denotes the mean or standard deviation,
and 8/(j = 1,...,N,i € I) are density functions.
Then, we compute the Bhattacharyya distance of
§] between observations and simulations :

df =dp <=§]nmw ‘§ébs7> : “

The final distance is the mean of these Bhat-
tacharyya distances over the selected output di-
mensions and different X, values :

N
dl(YobvasiMW) = %Zﬁzd;7 (5)
j=1 iel
where [ is the subset of informative output dimen-
sions considered for the inferred input.

The output mean Sobol” indices of figure ??
show that X,, can be estimated quite indepen-
dently due to its dominating marginal effect.
Moreover, figure 1 shows that if X,, is known,
then the difference in standard deviation between
observed and simulated output for the last three
dimensions could be attributed to X,,. These ob-
servations entice us to first perform an X, infer-
ence, then an X, inference, and finish with a joint
inference of X, components.

4.3. Aleatory variable inference
methodology

We start by investigating X,, inference. We choose
uniform distribution as candidate distributions,
which means that § = (a,b), where a and b are
the bounds of a uniform distribution. The rejection
algorithm therefore produces a set of accepted
uniform distributions that we average to get the es-
timated distributions. Neural network or polyno-
mial chaos expansion (pce) surrogates of the out-
put mean and standard deviation were used to save
computation time. Figure 2 presents the results of
an X,, and X,, inference in three mockup system
configurations. When the true distribution is a
beta, the estimated distribution is able to match the
density function shape quite accurately, following
the tail of the distribution. However, when the true
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Fig. 2. Inference of X4, and X, in three config-

urations. The distribution of Xg4,, X4, and X} are
: (top) : Beta(2,5), Beta(5,2), [0.5,0.5,0.5]; (middle)
: Uniform(0,0.5), Beta(5,2), [0.5,0.5,0.5]; (Bottom) :
Beta(2,5), Beta(5,2), [0.1, 0.8, 0.4]. The rejection algo-
rithm was run with n = 200 iterations, acceptance rate
of 0.1 and K = 100 repetitions for each control.

distribution is a uniform, the inferred distribution
fails to capture the rectangular shape of the uni-
form density function, yielding a more triangular
shape and heavier tails. The inaccuracy in )?al
estimation has an impact on )?az, which is worse
for output 2. Lastly, the inference quality is similar
between output 1 and output 3, showing that X,
inference is not drastically affected by assuming
an incorrect X.. Lastly, we learned after further
investigation that the inference quality remains
constant when adding new control variables for
both X,, and X,,. This means that we can get
a satisfying X,, inference from the initial baseline
design.

4.4. Epistemic variable inference
methodology

Having tested our methodology for X,, distribu-
tion inference, we can now aim at estimating X,
set . The choice of the distance metric is not
as straightforward because the effect of X, on
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the output is smaller. The goal is to find metrics
for which the distribution when X, is correct is
very different compared to when X, is random,
that is, wrong. For that matter, we found that
sampling the controls leading to the highest output
variance was an effective strategy. We investigate
two metrics, based on the Sobol’ indices. The first
one is the mean Bhattacharyya distance between
observed and simulated output standard deviation
distribution; the second one is the same but only
with ys.

The inference quality is quantified by estimat-
ing the mean average error with several mockup
system true X, values. We found that, while X,
and X, inferences are generally better than ran-
dom, X, inference is close to random values, or
worse. Therefore, we will adopt a conservative
approach for our X, inference.

5. Inference on the real system
5.1. Choice of control variables

Besides the baseline design, we sample our N =
10 real system observations as follows :

e One observation is chosen at the center
of the safe zone estimated in section 6.

e Two observations are chosen at optimal
points under two probability of failure
levels, as defined in section 6.

e Three points are chosen to maximize the
variance of y1, y2 and ys, respectively.

e The four remaining points maximize the
variance of all output dimensions : For
each output dimension, the output vari-
ance is estimated for a large number of
controls and the resulting vector is sorted
in decreasing order. We then add the vari-
ance ranks for all output dimensions and
select the four controls with the lowest
ranks.

While sampling at the optimal points will enable
to compare the real objective function value to
the value estimated with the computer model, the
points of high variance are useful for X, inference.
Choosing points of high variance for single out-
put dimensions allows a better input space explo-
ration, as some of the global high-variance points
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are close to each other.

5.2. Inference of aleatory variable

o

N=11
— Baseline

Density

1.0 0.0 0.5 1.0

Fig. 3. Inference of X, and X4, on one observa-
tion of the real system (magenta) vs 10 repetitions
of an inference on N = 11 observations, using the
Bhattacharyya distance metric. For each repetition, the
algorithm was run with n = 200 iterations and the
acceptance rate set to 0.1. Surrogates are used with
K = 100 repetitions for the each control variable.

We first perform an inference of X,, and X,,
on one real system observation, which is the base-
line design. The inferred distributions are used to
determine the controls of highest output variance,
that are then sampled from the real system. Figure
3 compares the inference on the baseline design
to repeated inferences on all our N = 11 observa-
tions. The distribution of )?al is centered around
0.2, which is where the switch between w1, y2
and y3 low and high values happens. Despite not
being able to compare the estimated distributions
with true distributions, it is at least coherent with
the system’s behavior. Moreover, the inference
made on the baseline design is indeed similar to
inferences made on 11 observations.

5.3. Inference of epistemic variable

We perform the X, inference on the real system
using the methodology and metrics described in
subsection 4.4, with n,. = 400, and K = 100
repetitions for each control variable. For each dis-
tance metric, the 10% of the X, values with the
lowest distance are represented on the histograms
of figure 4. Both metrics kept more X, and X,
values on the left hand side on the [0,1] interval,
especially the y5 standard deviation metric which
did not keep any X, or X,, past =~ 0.6. Inferred
values are more spread for X.,. Despite the nar-
row results of the y5 standard deviation metric, our
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Fig. 4. Histogram of inferred X, values for two differ-
ent metrics. 7op : Standard deviation Bhattacharyya dis-
tance accross all output dimension. Bottom : Standard
deviation Bhattacharyya distance of y5. The distances
were computed on nze = 400 X values, and only the
best 10% are kept.

lack of certainty towards the quality of this metric
entice us to use the following conservative ap-
proach : For each X, dimension, the lower bound
of the interval is the minimum value sampled
between the two standard deviation metrics, and
the upper bound is the maximum value sampled
between the two. The resulting X, set is B =
[[0.0015,0.94], [0.00036, 0.97], [0.033, 0.98]],
which is close to being the [0,1] interval. As a
comparison, the resulting X, set if we were to trust
the y5 standard deviation metric would be Ey =
[[0.0015,0.67],[0.026,0.58], [0.086, 0.98]]. More
samples would be needed for more accurate bound
estimations, and to take into account the distri-
bution of the inferred values inside the bounds.
Additionally, one could think of improving the
rejection algorithm, for example by implementing
a MCMC algorithm, although this would require
more tuning.

5.4. Prediction intervals

The last part of problem 1 consists of com-
puting prediction intervals of the output for the
inferred model and the baseline design X; =
[0.533,0.666,0.5]. To that end, twelve pce sur-
rogates were trained to predict the maximum and
minimum of each output dimension over the time
series. Seed to seed uncertainty was taken into
account by running the computer model K = 10
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times for each training input. Then, the training
output is the mean of the maximums or minimums
over the K repetitions.

6. Optimization
6.1. Visualizing the constraints

We proceed with our inferred distributions of X,
and X,5. However, without an inferred guess of
X, for the optimization task. To gain an initial
insight of the problem and build a foundation for
what approaches we want to select for the task,
visualization of the optimization problem was em-
ployed. We aim to determine the optimal control
parameter X . for a constraints-free performance-
based design and a constrained design. This is
done by solving the following optimization prob-
lem:

max min J(Xe, Xc) (6)

where the objective function is given by the ex-
pected contribution from I1 = {y1,y2,ys} as:

1
J(X., X.) = / > Elyi(Xa, Xe, Xe, 5,1)] dt.
0

i€l
(N
For the constrained design, a constraint describing
the probability of failure based on a limit state:

9i(X,s) = ¢;— max |y:(X, s,t)],

foralli € I
0<t<1

®)
is introduced, where system failure occurs for
gi(X,s) < 0. We create scatter plots describing
the relationship between X and max |y; (X, s,t)|
for i € I, over the interval ¢ € [0, 1], and include
the constraints ¢;. In figure 5 we observe that
certain values of X, and X .o appear promising
to fulfill ¢; and c5.

To enhance our understanding of the safe X,
domain, we created filtered 3D scatter plots that
include only points satisfying all constraints, as
shown in the right plot in figure 6, and points
violating constraints in the left plot of figure 6.
For each point in the X space, we sample n = 100
points where failure of one sample would lead to
the filtering of the corresponding X point.

Through this, we aim to develop an initial un-
derstanding of a region where the probability of
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system failure is low. As an estimate, we introduce
bounds for X. as seen in figure 6 where 97% of
the points within satisfy the constraints.
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Fig. 5. Scatter plot depicting the relationship of X,

and max |y; (X, s, t)| for Is = {ya,ys, ys}, with data
from the local model.

0.5

Xcl’ 10 00

Fig. 6. The left plot displays points that violate con-
straints, while the right plot shows points that satisfy
constraints. Bounds approximating a region exhibiting
a lower probability of system failure are included as
a wire frame, where the range of X ; is given by
[0.1,0.65], X2 by [0.25,0.85] and X3 by [0.0,1.0]

6.2. Neural network surrogate
optimization

To find optimal solutions for the performance-
based and constrained designs, we employ a neu-
ral network surrogate to approximate relation-
ships of interest. By utilizing these surrogates,
we gain the ability to perform a large number
of evaluations and leverage gradient-based strate-
gies. Our approach revolves around training surro-
gates based on data from the simulator, where we
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only utilize the relationships we find useful for the
optimization. This lets us train simpler surrogates
compared to fully recreating the simulator. As a
baseline for the surrogates we employ, we use a
three-layer feed-forward neural network. Further,
we would like to highlight that the results in this
section have been updated due to modifications in
our methodology.

Our primary surrogate was trained to predict
the relation between the input parameters X,,
X, and X, and the objective. The training data
was sampled from the simulator where X, was
sampled from the inferred distributions, and X,
and X. were uniformly sampled between O and
1. Furthermore, a total of n = 100000 samples
were drawn, and a random seed was used for each
sample. We consider this our objective surrogate,
and it achieves a R? score of 0.99 on a test set,
and the objective has been rescaled to the interval
[0,10].

Our secondary surrogate modeled the relation-
ship between the same inputs as our primary sur-
rogate and max|y; (X, s, t)| for Iy. With this max
value surrogate, we allow for fast evaluation of
the probability of failure for a given input, and it
reaches a R? score of 0.99 on a test set.

With our objective surrogate, we can now do
more affordable sampling. We use this surrogate
to approximate the inner minimization over X, €
E in equation 6. For each sampled value of X, we
generate multiple X, samples, and for each X,
we sample multiple realizations of X,. For a given
X., we compute the mean of the surrogate objec-
tive across X,. Among the sampled X, values, we
identify the one corresponding to the lowest 5th
percentile with respect to the objective. Through
this process, we get an estimate of the worst-
case performance for each sampled X .. With this
data, we now address the outer maximization in
equation 6.

6.2.1. Performance-based optimization

The inspection of the left plot of figure 7 shows

a complex landscape of the data generated for

)I(nir}z J(X., X.) using our objective surrogate.
€

From the slice present, we can identify areas with

high and low values, however, the data appears

noisy, where peaks and valleys can lead us to local
optimumes.

A new surrogate is trained to map the design
variables X . and the worst-case scenario data we
generated from our objective surrogate. The pri-
mary purpose of this new surrogate is to capture
the underlying trend of the data and provide a
smoother representation. This surrogate achieves
an R? score of 0.74 with respect to the data it
approximates, and its ability to capture underlying
trends can be studied in 7. Furthermore, with a
smoother representation of what we want to max-
imize, we now cater to gradient-based approaches
to efficiently search for optimum candidates.

Further, through the same sampling methods we
used to gather data for )1(13161}2 J(Xe, Xc), we now

search for max J(Xe, X,) for our candidate opti-
<€

mal control parameters giving us the the estimated

range Jrange (X.). However, for the optimization,

we only consider )EnmE J(X., X.) as this is our
€

objective.

o Data at Xc3 = 0.10

I}IISI prediction at Xc3 = 0.10

5.54 - 5.54
5.23 5.32
o~
492 J 05 5.11
4.61 4.89
43 o 4.67
0.0 0.5 10

Xcl

Fig. 7. Sliced contour plots showing gathered data of
Xmir;; J(Xe, X¢) from our objective surrogate (left)
€

and a surrogate trained on to predict )?HHE J(Xe, Xe¢)
€
from X (right).

Three optimization algorithms, L-BFGS-B,
TNC, and slsqp from scipy Virtanen et al. and
SciPy 1.0 Contributors (2020), were used to per-
form the optimization. To mitigate the risk of
converging to local minima, each algorithm was
initialized from multiple starting points in the X,
space. Through this approach, we obtain the un-
constrained optimal X, seen in table 1.
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6.2.2. Constrained optimization

For the constrained optimization, we search for
optimums under the constraint:

)1(122);} Pf,sys(XevXc) <e 9

We investigate two levels of allowed probability
of system failure ¢ = 1073 and ¢ = 10~ 4, where
the systems failure probability is defined as:

Pra (X2 X0) = P [mipas(X,9) < 0|10
1€l2

We employ the same approach as for the
performance-based optimization, however, now
with an added evaluation step for the found X,
candidates, where the failure rate of each optimum
is evaluated from n = 1000000 samples using our
max value surrogate.

To encourage optimum candidates that pass the
constraints, we consider the bounds from figure 6
as bounds for the initial start points of the optimiz-
ers. As the constraints are only addressed after the
optimizer has converged, we strive to avoid find-
ing optimums where the probability of failure is
high. By setting bounds for the initial guesses and
not setting strict bounds for the optimizer, we still
allow X, candidates outside our defined bounds.
Through this approach, we obtain the following
constrained optimal X, seen in table 1.

Table 1.
used and their respective starting points for the per-

Best result considering all algorithms

formance-based (first) and constrained optimiza-
tion. The objective J(Xe, X¢) is scaled to the in-
terval [0,10], and the lower bound of Jrange (X¢) is
the maximized objective.

Xc Jrange(Xc) €
[0.740,0.453,0.664] 6.054 - 6.677  none
[0.637,0.738,0.645]  6.005-6.719 10" 3
[0.576,0.629,0.669] 5.964 - 6.604 10~ 4

To further investigate the probability of sys-
tem failure, we aim to approximate its range by
sampling our max value surrogate for multiple
X, and X,. After n = 10000 X, samples with

n = 100000 X, samples, we obtain the range
[2.5 x 107%, 8.5 x 10~%] for X, =[0.637, 0.738,
0.645] and [7 x 1075, 4.6 x 1074] for X, =
[0.576, 0.629, 0.669]. From this, we observe that
our X¢ optimum for e = 1073 does not exceed
the limit for failure probability considering the
approximated range. However, for the optimum
X for € = 1074, even though this candidate
exhibits a lower probability of system failure, its
upper bound surpasses our desired limit of ¢ =
10~ 4.

Furthermore, we observe that our optimal can-
didates, both the performance-based and con-
strained, fall within or near our approximated safe
zone from figure 6. Hence, there could be a poten-
tial overlap with the domains of interest regarding
the two optimization problems.
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