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In this paper we develop probabilistic Remaining Useful Life (RUL) prognostics for Lithium-ion batteries using
Mixture Density Networks (MDNs). We integrate these prognostics into a reliable and cost-efficient linear program
model that identifies optimal battery replacement moments while limiting the risk of the batteries becoming
inoperable during operations. Over time, as more measurements become available, the RUL prognostics are
periodically updated, and the battery replacement strategy is adapted. We apply our approach for electric Vertical
Take-off and Landing (eVTOL) aircraft, a promising emerging technology for mobility in congested urban areas.
The results show that the RUL is accurately estimated using MDNs. The results also show that prognostics benefit
the planning of battery replacement, leading to 80% less yearly unscheduled battery replacements compared with
maintenance planning approaches when point estimates (average values) of the RUL are predicted.
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1. Introduction

Urban areas are confronted with increasing traf-
fic congestion. Electrical Vertical Take-off and
Landing (eVTOL) aircraft are seen as a promising
emerging technology for transportation in urban
areas Wei et al. (2024). For safe and reliable oper-
ations, the management of the batteries is crucial.

Current eVTOL designs consider Lithium-ion
batteries due to their high energy density, low
self-discharge rates and feasible costs. Compared
with Lithium-ion batteries for ground vehicles, the
battery management of eVTOLs poses additional
challenges: the take-off and landing of eVTOLs
are safety-critical flight phases when the discharge
rates of the batteries are high. In the long-run, this
directly impacts the overall health condition of the
batteries. We focus on data-driven RUL prognos-
tics for eVTOL Lithium-ion batteries, where we
distinguish between battery measurements taken
during the take-off, cruise and landing. More-
over, we employ the obtained RUL prognostics
to specify reliable and cost-efficient battery re-
placement strategies that are continuously adapted

as more measurements become available. At the
same time, beyond the specificity of features for
prognostics for eVTOL batteries, our models for
prognostics and battery replacement are applica-
ble to general fleets of vehicles equipped with
monitored li-ion batteries. It is only required that
a trade-off is to be made between continuing the
operation of the vehicles, and the risk of operating
with highly degraded batteries.

Several data-driven approaches for RUL prog-
nostics of Lithium-ion batteries have been pro-
posed in the last years. Xie et al. (2020) esti-
mate the RUL using a long-short term memory
recurrent neural network with particle filtering,
achieving less than 10% estimation error. In Zraibi
et al. (2021) a hybrid convolutional neural net-
work is combined with a long short-term memory
and a deep neural network to predict the RUL of
batteries. In Du et al. (2021) a long short-term
memory recurrent neural network is proposed to
estimate the RUL of the batteries. The estimation
errors achieved are below 0.13% in the last phase
of the battery lifetime (last 10 cycles).
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The studies above assume that the batteries are
subject to moderate discharge rates, which is the
case for electric ground vehicles. However, for
eVTOLs, the take-off and landing are performed
at higher C-rate than the cruise phase. Few studies
have developed SOH and/or RUL estimates for
eVTOL batteries. In Granado et al. (2022) a k-
nearest neighbors approach is shown to achieve
a high accuracy for SOH estimation. However,
the authors considers only the cruise phase of the
flight, which is a strong limitation of the approach
given that the take-off and landing are safety-
critical phases of the eVTOL operations. In Mitici
et al. (2023), a Gradient Boosting model is shown
to achieve the highest accuracy for RUL estima-
tion of eVTOL batteries. Here, the authors con-
sider features for every phase of the flight (take-
off, landing, and cruise). This study, however,
develops point estimates of the RUL. In contrast,
in this paper we estimate the distribution of the
RUL (probabilistic RUL prognostics), being able
to quantify the uncertainty associated with the
RUL estimates.

In this paper we propose an adaptive predictive
maintenance planning of Li-ion batteries, where
data-driven RUL prognostics are integrated in
an optimisation model for battery replacement.
First, probabilistic RUL prognostics for eVTOL
batteries are developed using a Mixture Density
Network, i.e. we estimate the distribution of the
RUL. These prognostics are further integrated into
a reliable and cost-efficient linear programming
model to plan battery replacements for a fleet of
eVTOLs. The aim of the planning is to limit the
risk of the batteries being in use beyond their End-
of-Life (EOL), while maximizing the number of
flight missions performed with each battery (or,
equivalently, minimizing the wasted battery life).
The obtained planning of battery replacements is
adapted over time, as more measurements become
available and the RUL prognostics are updated.
When considering eVTOL operations for a period
of 10 years, the results show that planning battery
replacements using probabilistic RUL prognos-
tics, rather than using point estimates of the RUL,
results in up to 80% less unscheduled battery
replacements due to batteries reaching their EOL

unexpectedly. Beyond the specificity of feature for
eVTOL batteries, our approach supports a reliable
use of a fleet of vehicles equipped with li-ion
batteries, where the health state of the batteries is
continuously monitored.

2. Problem description

We consider a fleet V of eVTOL aircraft. Each
eVTOL performs round trips to and from a hub.
Each eVTOL performs n trips per day. The batter-
ies are continuously monitored during operations.
For each eVTOL v ∈ V , sensor measurements
xvt ∈ R

M , t ≥ 0, are recorded every time unit
during operations, with M the number of param-
eters recorded. During operations, the battery is
constantly degrading until its End-of-Life (EOL).

Based on the measurements recorded up to time
t, a probabilistic RUL prognostic (the distribution
of the RUL) for each battery is obtained.

eVTOL batteries are replaced at a hub. If a bat-
tery is replaced before its EOL, a preventive cost
creplace is incurred. Battery replacement takes one
day (during which the eVTOL cannot fly). At the
start of a current day d0, battery replacements
are planned for the next days. Per day, at most h
eVTOL batteries can be replaced at the hub. If an
eVTOL reaches its EOL unexpectedly, then an un-
scheduled replacement is performed immediately
at a cost cunscheduled >> creplace.

We are interested in identifying reliable and
cost-efficient times of battery replacements taking
into account the probabilistic RUL prognostics, as
well as the flight schedule of the eVTOLs, and the
maintenance capacity of the hub.

3. Data description

We consider the condition-monitoring dataset for
Sony-Murata 18650 VTC-6 cell Lithium-ion bat-
teries Bills et al. (2023). These batteries are used
to perform a sequence of eVTOL flight missions.
A flight mission consists of a series of phases: a
Constant Current (CC) battery Charging phase, a
Constant Voltage (CV) battery Charging phase, a
Rest period, a Takeoff segment at a given power,
a Cruise segment at a given duration and power,
a Landing segment at a given power. In total, a
total of 22 mission profiles with different config-
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urations are considered. Of these, there are three
baseline mission profiles (MP1, MP13, MP20).
This baseline consists of a take-off at 54W for
75sec, cruise at 16 W for 800sec and landing at 54
W for 105sec, after which the battery rests until
it reaches a temperature of 30 ◦C. Charging is
performed at 1C during the CC phase, and at 4.2V
during the CV phase. The remaining 19 mission
profiles are derived from these baseline profiles by
altering various parameters, see Table 1.

Table 1. Mission profile characteristics, based on Bills
et al. (2023) (from Granado et al. (2022)).

Conditions Mission profiles

Baseline VAH01, VAH07, VAH27
Short cruise (400 sec) VAH12
Short cruise (600 sec) VAH13, VAH26
Long cruise (1000 sec) VAH02, VAH15, VAH22
Reduced power during flight (10%) VAH05, VAH28
Reduced power during flight (20%) VAH11
CC charge current reduced (C/2) VAH06 , VAH24
CC charge current reduced (1.5C) VAH16, VAH20
CV charge voltage reduced (4V) VAH07, VAH23
Lower ambient temperature (20◦C) VAH09, VAH25
Higher ambient temperature (30◦C) VAH10
Higher ambient temperature (35◦C) VAH30

Sensor measurements: during each flight mis-
sion, the following measurements are recorded:
time (sec), cell terminal voltage (V), cell current
(mA), energy supplied to the cell during charge
(Wh), charge supplied to the cell during charge
(mAh), energy extracted from the cell during dis-
charge (Wh), charge extracted from the battery
cell during discharge (mAh), cell surface temper-
ature (◦C), and cycle number (-).

Capacity tests: After every 50th flight mission,
the battery charge capacity is measured. This is
done by discharging it at a rate C/5 until the
voltage drops below 2.5V and SOC=0%. This is
followed by a period of rest during which the bat-
tery’s temperature drops below 30 ◦C. Following
this cooling phase, the battery is fully charged at a
charging rate of 1 C-rate and a constant voltage of
4.2V. This is followed by the battery performing
the next mission, referred to as the “capacity test”.
The first mission is a capacity test.

End-of-Life: We say that a battery reaches EOL
as soon as its capacity reaches 85% of the initially

measured battery capacity. This is measured dur-
ing the capacity tests. This threshold is based on
preliminary studies on eVTOL batteries such as
Alba-Maestre et al. (2021); Mitici et al. (2023).

Data processing of mission profiles: Dataset
Bills et al. (2023) reports tester malfunction for
VAH09. As such, we do not consider VAH09
(MP06) for our analysis.

4. Feature engineering

Based on the sensor measurements (see Section
3), we consider a total of 32 features Mitici et al.
(2023) that are related to the charging, discharg-
ing, and temperature of the battery. Let F =

{V AH01, ..., V AH30} denote the set of mission
profiles. Let Mb denote the set of missions per-
formed under mission profile f ∈ F . We consider
the following features for each mission 1 ≤ m ≤
Mb and profile f ∈ F :

Charging-related features: the duration of each
charging segment (CC, CV, Rest), denoted by
Δ(charge,seg,f,m); the amount of charge supplied
to the battery Qcrgf,m; the last measured battery
capacity Cmeasure,b,m.

Discharge-related
features: during each mission segment (take-off,
cruise, landing), the duration of each discharging
segment Δ(discharge,seg,f,m), the maximum, min-
imum, mean, and variance of the voltage, denoted
by V

(seg,f,m)
max , V (seg,f,m)

min , V (seg,f,m)
mean , V (seg,f,m)

var ;
the maximum, mean, and variance of the extracted
charge, denoted by Qdis

(seg,f,m)
max , Qdis

(seg,f,m)
mean ,

Qdis
(seg,f,m)
var .

Temperature-related features: the maximum
temperature during each discharging segment, de-
noted by T

(seg,b,m)
max .

Feature selection

We select the 16 most important features for
RUL prognostics based on their Shapley val-
ues Scott et al. (2017). The relative importance
of each feature is given in Table 2. The top
50% of the features with the highest importance,
V take−off
min through Qdistake−off

max , are selected
for RUL prognostics development. These values
are referred to as xf

m ∈ R
16. These values are

normalized using a z-score normalization x̂f
m =
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xf
m−μ
σ , with μ and σ the mean and standard devi-

ation of the dataset.

Table 2. SHAP values (importance) for the 32 consid-
ered features; top 50% of the features are selected for
RUL prognostics (in bold).

Feature Importance

V take−off
min 95.4

V take−off
mean 94.7

Cmeasure 93.4

V take−off
var 92.4

V cruise
max 87.8

Qcrg 87.1

ΔCV 86.5

V cruise
min 78.8

V cruise
mean 63.8

V landing
var 59.3

V landing
mean 57.4

V take−off
max 57.2

V landing
min 51.6

Qdistake−off
var 47.7

Qdistake−off
mean 46.5

Qdistake−off
max 45.9

Feature Importance

Qdiscruisemax 45.9
T cruise
max 45.4

T landing
max 41.1

T take−off
max 38.8

Δrest 36.5
V landing
max 35.5

Δtake−off 23.4
Δcruise 19.7
Δlanding 19.4
ΔCC 12.9
Qdiscruisevar 3.5
Qdislandingmax 2.4
Qdiscruisemean 2.3
V cruise
var 2.2

Qdislandingvar 1.4
Qdislandingmean 1.2

5. Probabilistic RUL prognostics

In this section we propose a Mixed Density Net-
work (MDN) Gu et al. (2022) to estimate the
distribution of the RUL of the eVTOL batteries.
Figure 1 illustrates the architecture of the MDN
considered, with an input layer, L dense hidden
layers, and the output layer. The network has pa-
rameters θ. The input vector of normalized fea-
tures from the current and previous missions be-
fore each capacity test m, m−50, ...m−50N (see
Section 4) x̂ is mapped to a three-fold output: the
means μj(x̂, θ), the standard deviations σj(x̂, θ),
and a mixture coefficient αj(x̂, θ). With this, the
probability density of the RUL, r, is estimated as
a mixture of J normal distributions as:

p(r|x̂, θ) =
∑

j=1..J

αj(x̂, θ)φ (r|μj(x̂, θ), σj(x̂, θ)) ,

with φ the PDF of a normal distribution, given
mean μ and STD σ. The loss function of the MDN
is given by the negative log-likelihood:

L(x̂, r, θ) = − log p(r|x̂, θ).

5.1. Results - RUL prognostics

We illustrate the RUL estimation methodology for
the eVTOL batteries. We employ a 6-fold cross
validation to train and test the MDN. For each
fold, several eVTOLs are randomly selected for
testing. The test data of each fold contains one
randomly selected baseline mission profile (out
of a total of three baseline mission profiles of
VAH01, VAH17, and VAH27) and 5 additional
mission profiles. Each fold contains a total of
approximately 6.000 missions.

Following hyper-parameter tuning, we consider
L = 6 dense hidden layers. The layers have 24,
122, 116, 116, 90, and 38 units, respectively. The
first five layers use the ReLu activation function,
and the last one a tanh activation function. The
output of the MDN consists of a mixture of J = 3

normal distributions. The MDN is optimised using
the RMSprop (see Riedmiller and Braun (1993))
algorithm with a learning rate of 0.01.

Table 3 gives the performance of the MDN for
each eVTOL in the test set of each fold. The
results show that the typical MAE is around 30
missions. Additionally, in nearly all folds, our
approach leads to a low CRPS score, indicating
a sharp estimate of the distribution of the RUL.

Figure 2 shows 2 examples of the estimated
distribution of the RUL: VAH20 for fold 1 and
VAH13 for fold 2.

For VAH13, the distribution of the RUL is cen-
tered around the actual RUL. Also, the variance
of the estimated RUL distribution decreases as the
battery reaches its EOL. For VAH20, despite hav-
ing a high CRPS score, the estimate distribution
of the RUL is increasingly sharp as the battery
reaches its EOL.

6. Adaptive maintenance planning of

eVTOLs using RUL prognostics

In Section 5 we obtained estimates of the distri-
bution of the RUL of eVTOL batteries after each
mission. We assume that each eVTOL perfoms
n missions per day (Section 2). For maintenance
planning of the batteries of a fleet of V eV-
TOLs, we consider the estimated RUL distribution
RULv

d0
, v ∈ V , at the start of each day d0.

To ensure safe eVTOL operations, we define
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Fig. 1. Architecture of the MDN neural network used to generate probabilistic RUL prognostics.

Table 3. Probabilistic RUL prognostics performance: MAE, RMSE, CRPS (flight missions).

Fold 1

VAH# MAE RMSE CRPS

VAH01 63.69 68.15 47.29
VAH02 35.41 37.37 24.92
VAH13 17.06 20.81 13.02
VAH20 56.06 59.04 42.51
VAH28 22.01 25.47 18.12
VAH30 17.5 21.47 12.1

ALL 35.29 38.72 26.33

Fold 2

VAH# MAE RMSE CRPS

VAH01 56.1 62.42 43.2
VAH05 29.4 37.0 19.65
VAH06 61.21 64.88 47.26
VAH13 32.78 36.06 22.36
VAH15 22.54 24.2 14.79
VAH16 20.32 22.34 14.41

ALL 37.06 41.15 26.94

Fold 3

VAH# MAE RMSE CRPS

VAH10 10.4 12.33 7.18
VAH11 66.9 75.07 53.55
VAH17 34.45 38.83 24.11
VAH22 9.62 13.74 8.33
VAH23 98.7 125.89 72.87
VAH25 51.79 74.78 37.48

ALL 45.31 56.77 33.92

Fold 4

VAH# MAE RMSE CRPS

VAH02 20.21 27.1 18.22
VAH06 29.36 33.22 19.54
VAH17 23.04 27.71 15.99
VAH20 57.5 59.24 42.48
VAH26 21.85 27.41 17.86
VAH30 7.59 9.46 7.85

ALL 26.59 30.69 20.32

Fold 5

VAH# MAE RMSE CRPS

VAH05 23.88 28.56 16.24
VAH12 52.09 59.95 39.32
VAH15 11.31 13.89 8.25
VAH16 17.53 21.85 13.57
VAH24 11.84 16.03 9.8
VAH27 26.8 34.61 21.95

ALL 23.91 29.15 18.19

Fold 6

VAH# MAE RMSE CRPS

VAH10 5.59 7.35 6.41
VAH12 61.23 66.06 48.09
VAH22 11.77 14.98 8.44
VAH24 20.93 25.28 14.27
VAH25 39.64 50.91 28.39
VAH27 36.84 40.62 24.11

ALL 29.33 34.2 21.62

the following target day d∗v to reliably replace the
battery of eVTOL v ∈ V :

d∗v = d0 +max{d : P[RULv
d0

≤ d] ≤ P ∗}, (1)

with d0 + d a battery replacement day, d ∈ N
+,

and P ∗ a reliability threshold. Here, we ensure
that the probability of the battery reaching its EOL
before maintenance day d0 + d is at most P ∗.

The eVTOL battery replacements are ideally
planned as late as possible to minimize battery
waste, while satisfying the reliability criteria in
eq. 1, i.e., while limiting the probability that the
battery is still in use after it reaches its EOL.

We consider a rolling horizon planning ap-
proach. At current day d0 we consider planning
a battery replacement withing a window Dd0

=

[d0+1, d0+k] based on the prognostics available
at d0. We next slide to a new day d0 + l, l ≥ 1,
when we update the prognostics with newly avail-
able measurements, and consider a new planning
window Dd0+l := [d0 + 1 + l, d0 + l + k].

At day d0 we decide whether to plan a battery
replacement at some day d in the planning window
Dd0 , or to postpone the decision for the next
planning window Dd0+l. In case eVTOL v ∈ V

is scheduled for battery replacement before d∗v , a
penalty cearly is incurred for every wasted day of
the battery life. If eVTOL v ∈ V is scheduled for
battery replacement after d∗v , then a penalty clate
is incurred for every day the battery is used after
the target d∗v . We consider a cost cvd of planning a
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Fig. 2. The actual RUL (RULa), the expected pre-
dicted RUL (RULp), and the 5-95 percentile of the
estimated distribution of the RUL, for VAH20 in fold
1.

Fig. 3. Same as Fig. 2, but for VAH13 in fold 2.

day - d0−1 0 1 2 20 21

past fixed Dd0 : under optimization future

Fig. 4. Illustration of a maintenance planning time
window at current day d0, with k = 20, such that
Dd0

= [d0 + 1, d0 + 20].

battery removal at day d ∈ Dd0
, where:

cvd = cearly(d
∗
v − d)+ + clate(d− d∗v)

+. (2)

We define cearly = creplace/L, where L is a
nominal average battery life of the eVTOLs. We
define clate = (cunscheduled − creplace)/L. In
case the battery replacement of eVTOL v ∈ V

is postponed for the next planning window, then a
cost cpostponev is incurred for every day the target

replacement day d∗v is exceeded, where:

cpostponev = clate(d0 + k + l − d∗v)
+. (3)

We consider the following integer linear pro-
gram to plan battery replacements on day d0.

Decision variables:

yvd =

{
1, battery v ∈ V replaced on d ∈ Dd0

,

0, otherwise.

zv =

{
1, battery v ∈ V not replaced in Dd0 ,

0, otherwise.

Objective function: We aim to minimize the
total costs of battery maintenance:

min
y,z

∑
1≤v≤|V |

⎛
⎝ ∑

d∈Dd0

cvdyvd

⎞
⎠+ cpostponev zv

Constraints:∑
d∈Dd0

yvd + zv = 1 ∀v ∈ V, (4)

∑
v∈V

yvd ≤ h ∀d ∈ Dd0
. (5)

Constraint (4) ensures that at day d0 a battery re-
placement is planned for each eVTOL, or that the
battery replacement is postponed. Constraint (5)
ensures that the daily battery replacement capacity
H of the eVTOL hub is not exceeded.

6.1. Results - Maintenance planning

We consider |V | = 25 eVTOLs, each equipped
with a battery randomly sampled from the test
sets of all the six folds (see Section 5). Each
eVTOL performs n = 10 flight missions (to
and from an eVTOL hub) per day. At d0 =

1, the ages of the eVTOLs batteries are ini-
tialised as a random value between 0 and their ac-
tual EOL. We consider P ∗ = 0.1, k = 10, h = 1,

l = 1, creplace = 100, cunscheduled = 1000,

L = 50. Using the maintenance planning model
in Section 6, a simulation of 10 years of eVTOL
operations is performed. As soon as one eVTOL
battery is replaced or reaches its EOL (unsched-
uled battery replacement), this battery is replaced
with a randomly selected battery from the test sets
of all six folds (see Section 5). The age of this new
battery is then initiated at 0 missions.
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Following a simulation of 10 years of opera-
tions, 1.786 batteries were used. Of these 1.786
batteries, 1.704 were replaced before their EOL,
and 82 batteries needed unscheduled replacement
since they reached their EOL unexpectedly. Our
approach results in a total yearly cost of 25.240

units. Figure 5 shows a histogram of the wasted
life of the batteries (in days), i.e., the number of
days the batteries were not used because they were
preventively replaced and thus did not reach their
EOL. Using our approach, the batteries were used
for up to 88,1% of their actual lifetime.

Fig. 5. Histogram of the wasted battery life - based on
the simulation of 10 year of operations.

Figure 6 shows a distinct planning moment for
the eVTOL batteries. At d0 = 105, we consider a
planning window of D105 = [106, 125] when the
batteries of eVTOLs 1, 2, 5, 7, 8, 9, 12, 14, 17,19,
23 are planned to be replaced within the next
days [106,125]. EVTOL 11 is planned for battery
replacement the next day (this replacement cannot
be changed anymore since no further planning re-
optimisation can be done). The battery of EVTOL
16 is replaced on day 116, just before it reaches
its EOL on day 117. As of now, the battery of
EVTOL 18 will fail at day 122 before its planned
replacement. However, this planning may be re-
optimized in the next days.

6.2. Performance evaluation

We compare our approach with two benchmarks:
Oracle planning and RUL point-estimate plan-
ning algorithms. Both use the same framework
as our proposed maintenance planning approach.
The Oracle planning assumes that the actual RUL
of the batteries is known in advance. As such,
d∗v = EOLv of the batteries. The RUL point-
estimate planning uses the mean of the estimated

RUL distribution (point estimate, instead of the
distribution) such that d∗v = d0 + E[RULv

d0
].

Table 4 shows the total yearly amount of batter-
ies replaced and costs made for the three planning
approaches. As expected, the Oracle leads to 0 un-
scheduled battery replacements. The RUL point-
estimate planning leads to the highest number of
unscheduled battery replacements (436 unsched-
uled battery replacements in 10 years of eVTOL
operations) and the highest total costs among all
three approaches. This shows the relevance of
considering the estimation of the distribution of
the RUL when planning maintenance (leading to
82 unscheduled replacements), instead of using
RUL point estimates.

Table 4. Batteries used and maintenance costs for
the Oracle, the (RUL) Point Estimate, and Our (RUL
distribution) approach.

# yearly replacements [-]

method scheduled unscheduled total

Oracle 164.8 0 164.8
Our approach 170.4 8.2 178.6
Point estimate 125.8 43.6 169.4

maintenance cost / year [1000]

Oracle 16.5 0 16.5
Our approach 17.0 8.2 25.2
Point estimate 12.6 43.6 56.2

7. Conclusion

This paper proposes a data-driven predictive
maintenance planning model for Lithium-ion bat-
teries that is reliable and cost-effective. We em-
ploy Mixed Density Networks to estimate the dis-
tribution of the batteries’ RUL (probabilistic prog-
nostics). These prognostics are further integrated
into an adaptive maintenance planning model that
specifies optimal battery replacement times. This
planning model limits the risk of using the batter-
ies beyond their End-of-Life (EOL), while mini-
mizing overall costs. We apply our approach for
electric Take-Off and Landing (eVTOL) aircraft.
The results show that despite the prognostics be-
ing imperfect, the number of unscheduled battery
replacements is low (only 8 unscheduled yearly
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Fig. 6. Maintenance planning for 50 eVTOLs at d0 = 105 with planning time window Dd0
= [105+1, 105+20]

and l = 1, k = 20.

replacements per year for 25 eVTOLs). Secondly,
the results show that up to 80% less yearly
unscheduled battery replacements are achieved
when considering probabilistic RUL prognostics
for maintenance planning, rather than RUL point
estimates. Overall, our approach outlines an end-
to-end framework for predictive maintenance of
a fleet of vehicles equipped with Li-ion batteries
with reliability and cost-related objectives.
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