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Subsea Inspection, Maintenance and Repair (IMR) interactions on underwater Oil & Gas infrastructure can have
severe consequences in case of failure. Currently, these interactions are mainly carried out using Remotely Operated
Vehicles (ROVs) with attached robotic arms where operators assess the situation and make decisions. To allow for
increased autonomy in operations on routine objects (valves, wires, hoses, tools), the ROV has to detect the objects
and their pose before manipulation tasks can be performed. These tasks typically involve risks, and therefore it is
desirable to estimate the probability of operation failure in order to provide decision-support to human operators
during the mission. In this paper, we propose a framework using machine learning with a Gaussian Naive Bayes
Classifier to estimate the failure-probability of robotic tasks based on the objects’ spatial uncertainties. As the
uncertainty input-feature we use the 6 DOF standard deviation of the object’s pose-estimate. We show how prediction
accuracy improves over time and how well the predictions match actual failure rates. We run 1000 simulated pick-
and-place operations with different uncertainties and discuss how our method can improve decision-support during
operation. We also include a small dataset collected by a 3D camera from real-world objects, test the transferability
of simulation results to these data and a pose-estimation algorithm, and examine the impact of data quality.
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1. Introduction

1.1. Background

Robotic object-interaction is a common task in
many industries. From very standardized assem-
bly lines in manufacturing over logistics handling
to remote operations for servicing and Inspection,
Maintenance and Repair (IMR) tasks in challeng-
ing environments. Important factors for the use
of robots, besides economy and efficiency, are
reachability and risk reduction. This is especially
the case in space and subsea operations and is a
reason why divers have been mostly replaced by
Remotely Operated Vehicles (ROVs) in the Oil
& Gas industry. In addition to the environment
being potentially harmful for humans, the tasks
themselves can impose a risk. If a subsea mainte-
nance job fails, it can lead to delays in production,
creating direct loss of income, or worse, causing
environmental damage through leakage of harm-
ful substances.

IMR tasks require frequent interactions with
known objects such as valves, wires, hoses, and

other equipment on the submerged infrastructure.
In order to automate these tasks, or assist hu-
man operators in their execution, the operational
”scene” has to be understood. The objects in
question and especially their poses (location and
orientation) have to be detected, and the desired
manipulation actions have to be defined. As these
interactions typically involve risks, it is addition-
ally desirable to base decisions on both the po-
tential (negative) outcomes of a failed interaction,
and its corresponding probability.

The project SAFESUB (Transeth et al. (2024))
aims to acquire and incorporate higher-quality
spatial uncertainty information about subsea ob-
jects to provide better and safer IMR operations.
A perception pipeline consisting of a new three-
dimensional (3D) camera and Computer-Aided
Design (CAD) based object-detection is devel-
oped to provide not only the objects’ poses but
especially for providing accurate estimates about
the spatial uncertainty of these poses. Figure 1
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Fig. 1. Perception pipeline: A 3D camera attached
to an ROV and object-detection algorithm provide the
estimates for pose and uncertainty of real world objects
as inputs to the failure prediction� that is focused on in
this work.

gives an overview over the elements in the per-
ception pipeline.

1.2. Related work

Uncertainty Most research and applications
dealing with uncertainties in object localization,
especially in cybernetics, focus on the correct fu-
sion and combination of different pieces of in-
formation coming from various sources or points
in time. The main goal is to minimize the result-
ing uncertainty and typically involves the use of
Kalman filters, factor graphs, and Simultaneous
Localization and Mapping (SLAM) techniques.

Some publications, such as Risholm et al.
(2021), mention the relevance of spatial uncer-
tainties in object detection for the success of sub-
sequent interaction tasks, such as robotic grasp-
ing. They also highlight the importance of ad-
justing acceptable uncertainty thresholds for high-
risk underwater operations. Bari et al. (2023) and
Brault et al. (2021) consider uncertainties dur-
ing interaction- and path-planning to optimize the
desired trajectories. However, quantified spatial
uncertainty information is rarely used to predict
end-to-end interaction outcomes.
Interaction Success Prediction Sogi et al.
(2024) propose a long-time-horizon success pre-
diction to optimize task planning. They employ
a neural network to extract a low count of rel-
evant features of an image series of the scene
to be worked on and use these features as input
for Success-or-Failure-Classification. Both neu-

ral networks, classifier and feature extraction, are
trained and evaluated on generated and simu-
lated robotic interaction tasks. They also mention
the relevance of success-prediction for operator
decision-support.

Pastor et al. (2011) apply iterative prediction of
action-success based on all available sensor-data
but focus mainly on the learning of complex motor
skills. Rubert et al. (2019) focus on the specific
task of grasping objects using robotic grippers
and ways of predicting the success thereof. They
compare predictions learned from different data-
and feature-sets including simulated physics, hu-
man judgment, real robot executions and a set
of quality metrics describing different object and
robotic properties (shape, volume, posture, etc.)
but not localization uncertainty.

Also focusing on grasping task success, Baek
et al. (2022) employ uncertainties in object inter-
action to learn which feature-variations influence
the success most and to select grasp locations on
objects with high probability of success. While in-
corporating uncertainty in their decision-making,
they do not predict the actual success of a task.

Success Prediction using Uncertainties Al-
though the minimization of spatial uncertainty
and the prediction of task-success are common in
existing research, the combination of predicting
the outcome of interactions with known objects
based mainly on their localization uncertainty to
support decision-making for human operators or
autonomous systems is rare.

1.3. Objective of paper

The goal of the presented work is to make use
of the knowledge about the spatial uncertainty in
decision making and risk evaluation. In section 2
we propose a methodology to use the quanti-
fied spatial uncertainty elements of an interaction-
object as indicator values to predict the failure-
probability for a given, known robotic interaction
task. By simulating an interaction scenario mul-
tiple times with various uncertainty values, we
learn from the seen outcome and provide a failure-
estimate for new encounters before the manipu-
lation task itself starts. The implementation of a
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simple pick-and-place interaction is demonstrated
in section 3, before presenting (section 4), and
discussing (section 5) the results.

2. Methods

To assess the usability of spatial uncertainty in-
formation to predict the failure of an interaction,
we propose to train a probabilistic binary classifier
for each type of interaction using the elements
of uncertainty as input features and the binary
outcome of the interaction (success or failure) as
the classes.

2.1. Spatial information and uncertainty

The pose of an object includes the location and
orientation of its origin within a reference frame:

ξ = [p,Θ] = [x, y, z, φ, θ, ψ] (1)

is the 6 Degrees of Freedom (DOF) pose and
its decomposition in translational and rotational
elements.

Its uncertainty can be expressed using the vari-
ance σ2 or standard deviation σ of these elements:

σ2 = [σ2
x, σ

2
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2
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σ =
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√
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(2)

We use the standard deviation values in σ as the
uncertainty features for classification.

2.2. Classifier

A Classifier is an algorithm that predicts which
class or category an instance belongs to based on
a set of features. A probabilistic classifier also
estimates the likelihood of each category.

We use a planned, known interaction task on a
detected object as the instance i, the object’s pose
uncertainty σ as the features, and the success (S)
or failure (F ) of the task as categories.

Using a probabilistic classifier we can then get
an estimate of the likelihood of success and its
complement (failure):

P (success) ≈
P̂ (i ∈ S|σ) = classifier. predict(σ)

P (failure) = 1− P (success)
(3)

A B C

0Td

ξ̂0= ξ0

ξ̂d

fa()

Fig. 2. Pick-and-place interaction and acceptance for
a brass part: A: Desired interaction without uncer-
tainty. B: The estimated start pose ξ̂0� is different from
the actual pose ξ0�, resulting in the center of the
estimated target ξ̂d� and the potential end pose to be
outside off the acceptance region fa()�. C: The center
of the end pose is inside the acceptance region, the
large offset in the estimated start pose makes it unlikely
though that the part would get picked up correctly.

The classifier is trained in a supervised way,
meaning that the correct outcome is provided:

classifier. learn(σ, outcome ∈ {F, S}) (4)

2.3. Interaction

An interaction can be loosely defined by the object
to be acted on, it’s start- and it’s goal-state. To
be able to evaluate the success, acceptance criteria
have to be defined.

Because many IMR operations on various
valves and objects can essentially be broken down
into combinations of pick-and-place or pick-and-
turn tasks (grasping an object or tool, moving
it and releasing it), we choose this as our basic
interaction.

We use the poses ξ0 as the start state, ξd as the
desired state, and ξend as the actual outcome state.

fa(ξd, ξend)→ {F, S} (5)

is a function to check if the outcome is acceptable,
and the task successful.

Figure 2 visualizes an interaction for a simple
pick-and-place operation for a brass part (see sub-
section 3.1), as well as the target region defined
by fa to accept the task as successful. It also high-
lights a potential difference between the estimated
start state ξ̂0 and the real start state.
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Fig. 3. Cast brass part of a water-pump used in per-
ception and simulation to demonstrate the proposed
method. Illustration based on CAD data.

3. Implementation

To assess the utility of the spatial uncertainty in
itself while the real perception pipeline is still
under development in the project, we chose to
simulate the interaction with generated data as a
first step.

3.1. Datasets

We use two datasets with generated uncertainty
data for demonstration. Dataset 1 is the main
dataset and is sampled from given uncertainty
distributions to train the classifier and test its fea-
sibility. The uncertainty in Dataset 2 is obtained
using a trained 6D pose estimation algorithm ap-
plied to objects captured by a 3D camera, and
demonstrates an early implementation of the per-
ception pipeline. The object available for creating
the second dataset is a component of a water-
pump as illustrated in Figure 3. Therefore we use
this object for the interaction simulation of both
datasets.

3.2. Interaction & simulation

The goal of the pick-and-place interaction is to
move the object relative to its start pose ξ0 by
20cm along it’s own x-axis and turn it by 90°
around its z-axis (0T d). The new center position
should be within 5cm of the desired location, with
rotation errors penalized by 10cm/radiant.

ξ0 = [0.6, 0.05, 0.02, 0,−π, 0]
0T d = [0.2, 0, 0,−π, 0, 0] (6)

fa(ξd, ξend) :

{
S, if ‖ ξd − ξend ‖2≤ 0.05

F, otherwise

The object is placed within reach in front of

a Franka Emicaa Panda robot inside a simulated
environment. The robot’s gripper aims to grab the
part by its extended flange, assumming the part is
in the estimated pose ξ̂0 that is provided by the
perception pipeline.

The simulation is realized using Gazebo
Sim Harmonic. Motion-planning, -control and -
execution using Robot Operating System (ROS) 2
Jazzy, MoveIt2 and pymoveit2b.

3.3. The perception pipeline

The perception pipeline (cf. Figure 1) aims to
provide the estimated pose ξ̂0 of a detected object,
along with accurate spatial uncertainty informa-
tion σ based on the real object’s pose ξ0.

[ξ̂0,σ] = perception. detect(ξ0) (7)

To test the proposed prediction method, we
generate Dataset 1 containing 1000 entries by
sampling poses from a normal distribution. A
small Dataset 2 with six entries is generated by
sampling poses from a trained object-pose estima-
tion algorithm, as part of the intended perception
pipeline.

Dataset 1 To guarantee poses with correct associ-
ated uncertainties we pick and fix a standard devi-
ation as the uncertainty for each of the 6 DOF and
then sample a pose based on these. To allow the
classification algorithm to learn, the uncertainty
values have to vary between the different entries in
the dataset during learning. This is accomplished
by picking a new random standard deviation (σ)
before sampling each pose.

σ ∼ N (0, [.015, .015, .015, .04, .04, .04]2) (8)

Eq. (8) sets a new pose uncertainty σ by sampling
from a normal distribution with zero mean and the
given variances.

0T 0̂ = ξsampled ∼ N (0,σ2) (9)

Eq. (9) samples the pose ξsampled from a normal
distribution with zero mean and variance σ2. This

ahttps://franka.de/
bhttps://github.com/AndrejOrsula/pymoveit2



2435Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

pose is then used to offset the true object pose ξ0
to the estimated pose ξ̂0.

ξ̂0 = ξ0
0T 0̂ (10)

The individual uncertainty σ and estimated
pose ξ̂0 are stored for each data-entry and later
used for training and simulation respectively.

Dataset 2 To address uncertainty in pose estima-
tion for real-world objects in challenging subsea
environments, our detection departs from tradi-
tional object pose regression approaches and in-
stead estimates object poses by sampling candi-
dates from a diffusion model (see Ikeda et al.
(2024)). This approach enables simulation and
analysis of pose variability within the perception
pipeline for real-world object pose estimation. We
use 3D data of cast manufactured parts (see sub-
section 3.1) acquired for the scan-to-cad dataset in
Mohammed et al. (2023) for training a diffusion
model. The data was captured by placing the parts
on a turntable and scanning them with a Zivid 3D
camera. Additionally the true pose ξG of the ob-
ject is referenced as ground-truth. To simplify the
training, the object-detection uses a continuous
6D rotation representation proposed in Zhou et al.
(2020) that overcomes the discontinuities of typi-
cal rotation representations such as quaternions or
Euler angles.

The object detection’s output for each data-
entry consists of 50 pose-candidates. From these
pose candidates we need to define the estimated
pose ξ̂0 to be used for simulation and return the
uncertainty σ in the same form as before. We opt
to find the mean of candidates ξμ as the base for
the estimated pose ξ̂0.

While easy for the position, the averaging of
orientation representations is more complex and
subject to current research. For simplicity we refer
to Hartley et al. (2013) and use the L2-cordial
mean with an implementation in scipyc.

Replacing Eq. (9), the offset between mean
pose ξμ and ground-truth ξG is used as the esti-
mation offset for the simulation of the dataset 2

chttps://docs.scipy.org/doc/scipy/reference/generated/scipy.
spatial.transform.Rotation.mean.html

entries.
0T 0̂ = ξG

�ξμ (11)

3.4. Classification

We choose Gaussian Naive Bayes with categories
for success and failure as a simple classifier. It
allows for iterative online supervised learning dur-
ing operation and returns not only the most likely
category but also the probabilities for a feature
set belonging to each category. We use river’sd

implementation.

4. Results

For Dataset 1 we simulated 1000 pick-and-place
interactions using the suggested methods and im-
plementation. In 641 cases the interaction was
judged a success. Figure 4 visualizes the outcome
against the combined translational and rotational
uncertainties.

4.1. Binary prediction

The binary prediction is the most likely category;
either Success or Failure.

Starting with no prior knowledge the method
learns from each outcome and predicts before
each task. By the end, it shows an overall accuracy
of 67%, meaning that in 670 of 999 cases (no

dhttps://riverml.xyz/dev/api/naive-bayes/GaussianNB/

Fig. 4. Interaction outcomes: Successful•
and failed× interactions plotted against the summed
up uncertainties for location (σx,y,z) and orientation
(σφ,θ,ψ).
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Fig. 5. Accuracy development: The ratio of cor-
rect predicted outcomes during 1000 interactions for
the original dataset� and for 10 learning phases in
different randomized order� in a boxplot-style: lines
for min, max and median, area for interquartile range.
Also showing where the initial learning ends�.

prediction for the first case) the predicted outcome
corresponds to the real outcome.Table 1 shows the
complete confusion matrix.

Table 1. Confusion Matrix for Dataset 1

Predicted
Failure Success

Actual
F 127 231
S 98 543

Figure 5 shows the development of the accu-
racy during learning. Especially in the beginning,
when not many outcomes have been seen, it fluc-
tuates substantially. After around 100 interactions
it converges towards the final value. To exclude
a specific influence of the order of interactions,
we repeat the learning with multiple randomized
sequences and obtain similar results.

4.2. Probability prediction

Using a probabilistic classifier, we do not only get
the most likely category, i.e., failure or success,
but also an estimate of the probability of a feature-
set belonging to each category (see Eq. (3)).

For evaluation, we discard the first 100 pre-
dictions from the initial learning phase, sort the
remaining results by their predicted success prob-

Fig. 6. Probability Prediction after the initial learning
phase compared to actual outcome. Each bin includes
about 90 simulated interactions.

ability, and divide them into ten equally sized
bins. Each bin includes about 10% of the results.
For each bin we determine the median predicted
success probability (M(P̂ )) and compare it to the
rate of success in simulation (R) within that bin.
Results can be seen in Table 2 and Figure 6.

R =
s

n
(12)

with n being the total and s the successful number
of observed interactions.

Table 2. Probability prediction after
the initial learning phase compared to actual outcome:

Bin P̂ (i ∈ S|σ) n s M(P̂ ) R Δ

1 [0.00, 0.23] 90 33 0.09 0.37 −0.27
2 (0.23, 0.45] 90 43 0.36 0.48 −0.12
3 (0.45, 0.59] 90 42 0.54 0.47 0.07
4 (0.59, 0.69] 90 53 0.64 0.59 0.05
5 (0.69, 0.75] 90 57 0.73 0.63 0.09
6 (0.75, 0.79] 89 62 0.78 0.70 0.08
7 (0.79, 0.82] 90 62 0.81 0.69 0.12
8 (0.82, 0.85] 90 70 0.84 0.78 0.06
9 (0.85, 0.87] 90 72 0.86 0.80 0.06

10 (0.87, 0.97] 90 80 0.90 0.89 0.01

4.3. Dataset 2

The second dataset only contains six entries at this
point due to the effort needed to collect data, es-
pecially ground-truth related to real object’s pose.
Further, this is a demonstration of the proposed
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method and the pose estimation is still under de-
velopment.

It is not possible to re-train the classifier com-
pared to the 100 samples needed to reach a stable
prediction accuracy (cf. Figure 5). Instead we use
the already trained classifier from Dataset 1 for
outcome-prediction and simulate the same pick-
and-place operation to compare the real outcome.

This can give us a first impression on how well
the already trained classifier can be transferred to
samples that are closer to the intended pipeline
but also more costly to generate. Additionally it
allows us to evaluate the data quality from the
detection in its current state.

The simulated outcome for all six cases show
failed interactions, although four of them were
predicted to be successful.

5. Discussion

5.1. Framework

The presented framework, using few features and
Gaussian Naive Bayes as classifier, is computa-
tionally very lightweight and can be implemented
on limited hardware while at the same time learn-
ing incrementally from new observed outcomes
during operation. A bigger challenge in practical
implementation, especially with increasing auton-
omy, is to decide at what point an interaction
should be considered as ended to invoke fa() for
determining the true outcome.

5.2. Binary prediction

The results regarding binary prediction for
Dataset 1 (subsection 4.1) show that the spatial
uncertainty alone has information about the suc-
cessful or failed outcome of an interaction, and
that this information can be used to predict the
outcome. This information can be harnessed even
with both a relatively simple representation of
the uncertainty (σ) in combination with a simple
classification method. While we, as a first step,
work mainly with sampling, simulation and the
abstraction of underwater robotic interaction to
a generic pick-and-place operation, we argue the
concept to hold in general for subsea interaction.

Using iterative learning, the prediction accu-
racy varies a lot in the beginning and is dependent

on the order and outcomes. Though, as Figure 5
shows, it approaches 67% in the dataset shown,
independent of order.

It is lower than the grasp-success prediction of
80% in Rubert et al. (2019) but on the other hand
contains the prediction of end-to-end interaction
(including grasping) and works on a more general-
ized and abstract feature set. Looking at the preci-
sion of the prediction the 70% presented here (543
out of 774 predicted successful outcomes where
actual successes) are within the range of 62% to
92% reported by Sogi et al. (2024)’s method.

5.3. Probability prediction

The usage of a probabilistic classifier allows us
to predict the likelihood of a successful outcome.
The results shown in Table 2 and Figure 6 show
a pessimistic prediction in the low end (with a
higher success rate than predicted) and a slightly
too optimistic prediction for the rest. Apart from
the lowest prediction bin, the difference remains
below 12%. If there is a set of alternative actions,
the predicted success probability for all of them
can be used to choose the most promising alterna-
tive for execution, as is done for grasping actions
in Baek et al. (2022).

The success- and failure-probability prediction
of an interaction should be especially relevant
for risk-aware decision-making when combined
with information about potentially negative con-
sequences of a failed interaction. While a decision
solely based on this approach might be too un-
certain for high risk environments, the prediction
provided with the proposed method can be one
valuable information source.

5.4. Sources of data

The second dataset highlights that some work is
needed to align the data-qualities used for training
and prediction and that datasets from a different
source need careful evaluation. The poses do not
have a big variance, comparing their mean to the
ground truth, however, shows an offset, revealing
a high precision but too low accuracy of the cur-
rent object-pose detection to be used with the pre-
trained classifier. In general, each learned outcome
is currently only valid for a particular combination
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of object, interaction and configuration (arm, grip-
per, trajectory planner, environment, etc.). While
a transferability of the classifier is likely once
the provided real data and the one trained on are
qualitatively close enough to each other, different
configurations most likely need retraining.

5.5. Further work

Although the proposed framework looks promis-
ing, the next step is to have a closer look into
the data provided by the perception-pipeline and
if the methods transfer well to learning on data
from real objects. While costly to set up, it would
also be interesting to determine the interaction
outcome in real-world robotic experiments. Fur-
thermore, the combination of different classifiers,
potentially neural networks, and more general-
ized training, across different object-interaction-
combinations might both harness the available
information in a more efficient way, allow for
more transferability between different scenarios,
and open up future research topics.

6. Conclusion

This paper focuses on demonstrating a framework
for estimating the failure probability of robotic
object-interaction from spatial uncertainty data.
The framework uses a relatively simple machine
learning approach for the prediction, which shows
a promising potential to be combined with infor-
mation on unwanted consequences and used for
online risk-aware decision-making.
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