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Maintaining the reliability of complex systems is crucial in today’s technological landscape. Maintenance strategies
have evolved from corrective and time-based maintenance to condition-based maintenance and prognostics and
health management. Typical remaining useful lifetime (RUL) prediction methods require substantial historical data,
posing challenges in data-limited scenarios. To address this, we propose an efficient Bayesian polynomial regression
approach with informative priors that predicts RUL even with sparse data. Regression parameters are continuously
updated as new data are collected, ensuring accuracy and responsiveness. We validate our algorithm on simulated
power module run-to-failure degradation data.
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1. Introduction

In today’s fast-evolving technological landscape,
the reliability of complex systems and equipment
is of paramount importance. Reliability can be
addressed from the design, the production, and
from the maintenance point of view. Maintenance
can be defined as any activity including tests,
measurements, replacements, adjustments, and re-
pairs. It was intended to retain or restore a func-
tional unit to a specified state in which the unit can
perform its required functions Kordestani et al.
(2021).

Historically, maintenance started as corrective
maintenance, where the system was serviced and
repaired after a failure occurred. This approach,
while straightforward, leads to unexpected down-
times and increased costs Wang et al. (2014).
Subsequently, time-based maintenance emerged,
where maintenance is performed at scheduled in-
tervals regardless of the system condition. Al-
though this method reduced unexpected failures, it
was still not optimal because it did not account for
the actual wear and tear of the components Ahmad
and Kamaruddin (2012). With the advancement of
sensor technologies, condition-based maintenance
(CBM) became the new paradigm. CBM involves
collecting sensor data from the system, deriv-

ing health indicators, and performing maintenance
actions based on these indicators Navarra et al.
(2007). Despite its effectiveness, CBM does not
predict future failures, leading to the development
of Prognostics and Health Management (PHM)
or CBM+ Jaw and Merrill (2008). One feature
of PHM is the prediction of Remaining Useful
Lifetime (RUL) of components by analyzing the
health indicators and forecasting future degrada-
tion.

The RUL of a system or a component can be de-
fined as a random variable that depends on the age,
operation environment, and the observed health
indicators Si et al. (2011). RUL prediction ap-
proaches can be broadly classified into three cate-
gories: data-driven, model-based, and hybrid algo-
rithms Heng et al. (2009). Data-driven algorithms
rely on historical and real-time data to predict
the RUL by identifying patterns and relationships
in the data using statistical and machine learning
techniques Medjaher et al. (2012). Model-based
algorithms, on the other hand, involve the devel-
opment of physical or mathematical models that
describe the degradation process of the system or
component Jaw and Wang (2006). Hybrid algo-
rithms combine elements of both data-driven and
model-based approaches to leverage the strengths
of each method Liao and Kottig (2014).
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Before building a model for RUL, features that
indicate the state of health and serve as inde-
pendent variables to predict the RUL need to be
identified. This can be based on domain knowl-
edge, or specific methods like Principal Compo-
nent Analysis (PCA) for dimensionality reduction
can be applied Rehab et al. (2021). PCA can help
in extracting the most significant features from
high-dimensional data, which can then be fed into
predictive models for RUL estimation.

One of the most popular data-driven meth-
ods are neural networks, which are capable of
capturing complex nonlinear relationships in the
data. For instance, deep learning techniques, such
as Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks,
have been effectively used for RUL prediction due
to their ability to learn from sequential data and
extract meaningful features automatically Cheng
et al. (2020). Support Vector Machines (SVMs)
are another data-driven method for RUL predic-
tion. SVMs are robust to overfitting, especially
in high-dimensional spaces. Ensemble learning
techniques, such as Random Forests and Gradient
Boosting Machines, have also been employed for
RUL prediction Dong et al. (2014). These meth-
ods combine the predictions from multiple models
to improve accuracy and robustness.

RUL prediction methods typically require sub-
stantial amounts of historical data to train accurate
models Liao and Kottig (2014). The dependency
on large data sets can be a significant limitation,
especially in scenarios where historical failure
data are sparse or incomplete. To address this
data-dependency challenge, Bayesian approaches
can incorporate prior knowledge into the predic-
tive model and therefore reducing the reliance
on extensive historical data Wang et al. (2023).
Typically, these methods require comparable high
computational resources which makes them diffi-
cult or even impossible to use them in so-called
”edge” devices.

Our proposed approach addresses situations of
sparse data and limited calculation resources. It
leverages Bayesian polynomial regression, which
incorporates prior knowledge into the predictive
model, and reduces the reliance on extensive his-

torical data. Furthermore, we combine Bayesian
regression with linear polynomial regression for
more efficient RUL predictions. This approach
improves their robustness. Moreover, it provides
a probabilistic framework that accounts for uncer-
tainties, which is crucial for effective maintenance
planning and decision-making.

2. Regression Update with Data

Consider a generalized polynomial regression
model where the relationship between the depen-
dent variable y and the independent variable x is
given by a polynomial of degree γ,

g(y) = β0 + β1x+ β2x
2 + ...+ βpx

γ + ε, (1)

where ε is the error term and g is the link function.
For the simple linear case, g is the identity func-
tion and ε is assumed to be normally distributed
with mean zero and variance σ2:

ε ∼ N (0, σ2). (2)

Without loss of generality, in this work we use a
two-parametric model with β0 and βp = β1. As
new data points (xi, yi), i ≤ n, are observed,
we update the coefficients β̂0 and β̂1 iteratively.
For each new data point, we determine β̂0 and β̂1

based on the least squares criterion

min
β0,βp

k∑
i=1

(yi − (β0 + β1x
γ
i ))

2
, (3)

where k ∈ {l, ..., n}, l ≤ n, and l, n ∈ N.
For low values of l, i.e., when only few degra-

dation data are available, we use a Bayesian re-
gression. For this, we apply normally distributed
priors to the regression coefficients,

β0 ∼ N (μβ0 , σ
2
β0
),

β1 ∼ N (μβ1 , σ
2
β1
). (4)

In fact, we set σ2
β0

and σ2
β1

as functions of x,

β0 ∼ N (μβ0 , σ
2
β0
(x)),

β1 ∼ N (μβ1
, σ2

β1
(x)). (5)

By varying σ2
β0
(x) and σ2

β1
(x), the impact of the

prior can be controlled.
Using the Bayes’ theorem, we get:

p(θ|y) = L(θ|y)p(θ)
p(y)

, (6)
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where p(y) =
∫
L(θ|y)p(θ)dθ. Because p(y)

does not depend on θ, the Eq. 6 can be rewritten
as

p(θ|y) ∝ L(θ|y)p(θ). (7)

This can further be expanded to

L(θ|Xi+1)× L(θ|Xi)× p(θ)

= L(θ|Xi+1)× p(θ|Xi),
(8)

where p(θ) is a prior for θ before knowing Xi and
L(θ|Xi+1) × p(θ|Xi) is the posterior of θ given
prior p(θ|Xi).

So, we use the posterior after the first update as
the prior for the second iteration, and so on.

3. Dynamics of Regression Updates

The general framework of our approach for RUL
prediction integrates Bayesian regression with in-
formative priors for initial predictions and transi-
tions to linear polynomial regression as more data
become available.

At the start of the operation, we employ a
Bayesian regression with priors derived from
comparable systems. This stage is crucial for pro-
viding robust predictions when historical data are
limited, and the system has just started to operate.
As the operation continues, sensor data are contin-
uously collected. The Bayesian regression model
is periodically updated with the new data, refining
the posterior distributions of the model parameters
and improving the accuracy.

We are observing degradation over time or cy-
cles, resp. Thus, we set x = t. With increasing
t, more data are accumulated and the need for
Bayesian regression diminishes. At a predefined
point in time, we transition from Bayesian regres-
sion to linear polynomial regression. The linear
polynomial regression model is trained using the
accumulated data, providing a simple and fast
calculation.

In this work, we identified the parameter VDS

as the dependent variable for the degradation
model. We first apply a log transformation to the
output parameter. This linearizes the relationship
between the independent and dependent variables,
making the data more suitable for polynomial re-

gression. Specifically, we transform VDS as fol-
lows:

y = log(VDS −min(VDS) + ϕ), (9)

where a constant ϕ = 10−7 is added to ensure
positive values. After the transformation, we apply
a backward-forward model selection algorithm.
This results in a cubic polynomial model of the
form

y = β0 + β1t
3 + ε. (10)

Bayes’ theorem states that the posterior can be
defined as

posterior ∝ likelihood× prior

evidence
. (11)

Because the evidence is independent of θ (Eq. 6)
and we want to maximize the posterior, we can
drop the evidence term and Eq. 11 becomes

posterior ∝ likelihood× prior. (12)

Considering the cubic polynomial model, Eq. 12
can be rewritten as

f(β0, β1|Y,X) ∝
n∏

i=1

L(yi|β0 + β1t
3)·

· f(β0) · f(β1).

(13)

The importance of the priors can be controlled
either by altering the likelihood L or by making
the prior more informative. Historic data are lim-
ited, especially for the case when the system has
just started operating. Therefore, down-scaling the
likelihood L by a factor γ ∈ (0, 1) has shown
to lead to unreliable predictions. Therefore, the
prior importance is controlled by making the pri-
ors more informative. This can be achieved by
changing the standard deviation of the prior dis-
tributions, σβi

, i = 0, 1, see also Eq. 5. Smaller
σβi makes the probability mass more concentrated
around the means μβi

, i = 0, 1. This results in
more informative prior distributions. On the other
hand, uninformative prior leads to simple linear
regression.

Due to the high number of data points in the
dimension of 104, we start with σβi

, i = 0, 1, in
the range of 10−10. Subsequently, σβi(t) is func-
tion of time. This is, σβi

(t) gradually increases
with t to reduce systematically the impact of the
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prior and gives more weight to the data in Eq. 13.
The algorithm shifts from Bayesian regression to
linear regression when the degradation signature
is visible in the collected data. This point can
be determined using, e.g., change point detection
methods. The rate at which the σβi

(t) increases is
controlled by domain knowledge.

The prior distributions for β0, β1 start from

β01 ∼ N (μβ0
, 10−10),

β11 ∼ N (μβ1
, 10−10)

(14)

and change over time to

β0n ∼ N (μβ0
, σ2

β0
),

β1n ∼ N (μβ1 , σ
2
β1
),

(15)

where n is the last step before end of life.

4. Case Study

To validate the proposed method, we simulated
run-to-failure data with typical degradation behav-
ior based on Di Nuzzo et al. (2023).

Fig. 1. Power module degradation data.

Figure 1 shows simulated representative power
module data, where the drain source voltage
(VDS) is the feature that reflects the degrada-
tion over time. Once VDS is above a certain de-
fined threshold, the module is considered to have
reached its end of life. In this work, this threshold
is chosen arbitrarily. Typically, power modules
show a constant linear drift in the VDS at early
stages, followed by an exponential degradation
pattern.

Figure 2 gives the transformed power module
data using Eq. 9.

Fig. 2. Transformed power module degradation data.

In this work, the main parameter for the model
assessment is the accuracy of the RUL prediction.

Figure 3 shows comparative results of Bayesian
and linear cubic regression models defined in Eq.
10 for one module. The prior distribution is based
on the regression coefficients computed for the
first 6 modules. The colored dots are the percent-
age of the full data set compared to the difference
between the true and predicted failure time. It can
be seen that even at 10% of the full data set,
Bayesian regression (red dots) provides accurate
RUL predictions. As more data become avail-
able, linear regression (blue dots) outperforms
Bayesian regression because it is not affected by
priors.

Fig. 3. Bayesian regression compared to linear regres-
sion for a single power module.

Figure 4 gives the results for all power mod-
ules. It can be seen that the for regression mod-
els adding informative priors essentially improves
the performance and reduce data-dependency on
sparse historic data.
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Fig. 4. Bayesian regression compared to linear regres-
sion for all power modules.

Figure 5 depicts how the actual and predicted
failure values are computed. We apply various
methods to the data when 20%, 50%, and 90%
of the lifetime is achieved. Then, we make pre-
dictions until end of life. The difference between
actual and predicted failure time is computed.

Fig. 5. The process of computing actual vs predicted
failure metric.

Table 1 shows the comparison of different mod-
els for the power module data set. Values are
averaged across all power modules. Negative val-
ues mean that the model underestimates the RUL,
whereas positive values mean that the model over-
estimates it. NA means that the prediction was
unstable.

The linear regression showed that the error
terms are heteroscedastic and have a skewed dis-
tribution. We compared our approach with two
Generalized Linear Models (GLMs). Both GLMs
are from the Gamma family, because the Gamma
distribution is tailored for continuous, skewed,

Table 1. Model comparison.

Model 20% 50% 90%

BLM -6409 -5306 -1775
log-linked
Gamma GLM -5693 12906 13996
inverse-linked
Gamma GLM -6685 11658 14474
FB Prophet NA 109882 22523
ARIMA NA 173159 19378
GPR NA 29390 6906

and positive-valued data. These GLMs can ef-
fectively transform and linearize data. The first
GLM utilized the log-link function which lin-
earizes the exponential growth pattern of the data.
The second GLM uses the inverse link which
accommodates the increasing variance frequently
seen in degradation processes. The next model is
the Facebook Prophet (FB Prophet) model Taylor
and Letham (2021) which works well for data
with non-linear shapes because it incorporates
change points where the growth rate shifts. The
ARIMA Hyndman and Khandakar (2008) model
is designed to capture the underlying patterns
and structures in time series data through its au-
toregressive (AR), differencing (I), and moving
average (MA) components. By focusing on the
intrinsic temporal dependencies and trends within
the data, an ARIMA model can effectively model
the continuous and progressive nature of degra-
dation. The final model is the Gaussian Process
Regression (GPR) which accounts for both tem-
poral correlations in the data and the mean trend
Erickson (2025).

Table 1 shows that the BLM model performs
best in comparison to the other investigated meth-
ods.

5. Discussion and Outlook

The new method shows advantages of using
Bayesian regression with informative priors for
RUL prediction in power modules. By continu-
ously updating the model parameters as new data
points are collected, our approach maintains high
accuracy and adapts to changing conditions. The
transition to linear polynomial regression ensures



1047Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

computational efficiency for accurate predictions.
Overall, our proposed method offers a robust and
effective solution for RUL estimation. It requires
few computational resources and can be used at
edge devices.

This method is developed specifically for the
degradation of power modules. It can be further
developed and evaluated for other electrical and
mechanical systems as well.

We still see potential for optimization in refin-
ing the linear regression model. We see that the
response variable shows heteroscedasticity, which
even increases by the logarithmic transforma-
tion. This imbalanced variation of the error term
puts more weight to the regression parameters at
the beginning of the degradation. Nevertheless,
the prediction of RUL becomes more accurate
with the BLM model. Alternative transformations
could be assessed to further stabilize the regres-
sion over time while optimizing the accuracy of
the RUL prediction. Also, alternative prior distri-
butions could be investigated.

The structure how the prior information
changes from informative to non-informative
prior could further be refined by using advanced
machine learning methods. This can be a further
lever for more accurate predictions.
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