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Wildfires are increasingly threatening the southwestern US states because of climatic extremes, heatwaves, dried
vegetation, and anthropogenic interferences. While wildfire-prone regions in the US are more likely to be populated
by higher-income groups, this fact overshadows the existence of thousands of low-income, underrepresented
individuals, lacking resources to prepare for and recover from wildfires. However, state-level and local policies for
wildfire management significantly differ across the states, driven by wildfire exposures, demographics, budgetary
priorities, and political scenarios. Although there is a growing literature on wildfire management, there are limited
studies analyzing state-level similarities and differences related to equitable wildfire resource allocation. To address
this gap, this study aims to investigate the key socio-demographic and economic factors associated with post-wildfire
resource allocation for the three southwestern US states (California, Arizona, Colorado), and compare/contrast the
underlying inequities. Data on wildfire incidents and socio-demographic information is collected from multiple
sources from 2015-2022, and interpretable machine learning models are implemented to evaluate the county-level
social inequities in post-wildfire resource allocation across the states. Our preliminary results highlight that the
disadvantaged Wildland Urban Interface (WUI) communities (higher proportions of low income, less education,
Black and Hispanic populations) are disproportionately impacted by wildfires as opposed to their wealthier
counterparts, which further worsened due to inadequate and inefficient post-wildfire resource allocations. The
outcomes of this study will better inform strategic decisions and policymaking for equitable wildfire management.
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1. Introduction

There is no denying that, due to climatic ex-
tremes, the increased rate of severe wildfires has
posed significant threats to communities and criti-
cal infrastructures across the southwestern United
States (US) [1, 2]. On this account, California
(CA) and Arizona (AZ) witnessed the highest pro-
portion of burnt areas from 2015-2022 [3], while
in Colorado (CO), the increasing frequency of se-
vere fires has devastating impacts on the wildland-
urban interface (WUI) [4]. The menaces of these
wildfires unveiled that inequality persists in post-
wildfire recovery efforts and resource allocations.
Often, the impoverished communities suffer the
most owing to the scarcity of resources available
to cope with the destruction [5]. For example, dur-
ing the 2025 Pacific Palisade fire in Los Angeles

CA, the City of Malibu, where residences of high-
profile Oscar-winning celebrities like Jeff Bridges
and Mel Gibson are situated, received substantial
firefighting resources and substantial national and
social media attention [6]. On the contrary, vul-
nerable communities significantly suffered [7]. A
similar story unfolded during the 2011 Wallow
fire in AZ. The remote communities had limited
personnel and equipment to confront the inferno,
while a resort community promptly received top-
notch resources and infrastructure to manage the
wildfire [8]. Similarly, in the aftermath of the 2020
East Troublesome Fire in CO, many communities
with no/inadequate wildfire insurance experienced
disparities as they were stuck in the administrative
process of obtaining relief funds, which delayed
rebuilding the community [9].
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Though all three states face challenges in ef-
ficient wildfire management and resource alloca-
tion, the nature of the challenges is unique. For ex-
ample, CA has expansive WUI communities, his-
torically devastated by some of the deadliest wild-
fires, where significant disparities are observed in
post-wildfire resource allocation [10]. Conversely,
AZ’s inadequate fire-suppressing infrastructures,
lack of disaster preparedness, and CO’s dispro-
portionate post-wildfire financial allocation posed
challenges to efficient wildfire management.

Although several studies focused on wildfire
prediction and susceptibility to forest fires us-
ing remote sensing, geospatial risk analysis, and
machine learning [11, 12], not too many studies
focused on the challenges to post-wildfire recov-
ery and mitigation strategies. For example, Auer
et al. and [13] addressed the risk of wildfire as-
sociated with expanding WUI communities, em-
phasizing the need for poly-centric governance
for wildfire emergency management across ju-
risdictions and stakeholders. Studies by Kolden
et al. [14] suggest community partnerships and
pre-fire mitigation activities are crucial in con-
tingency planning. However, most of the studies
overlooked the two significant aspects of post-
wildfire resource management—financial alloca-
tion and recovery efforts. Moreover, the previous
studies did not consider the interactions between
the socio-demographic factors and the resource al-
location/mitigation efforts. Finally, no state-level
comparative assessment of post-wildfire resource
management exists to understand how the in-
equities vary across different jurisdictions, polit-
ical environments, and past experiences.

Therefore, this study aims to investigate and
compare/contrast inequities in post-wildfire re-
source allocations across the three states to gen-
erate insights for comprehensive resource alloca-
tion and recovery strategy to advance equitable
wildfire management leveraging a data-driven in-
terpretable machine learning modeling approach.

2. Methodology

In this study, we propose a novel data-driven
framework to investigate inequity in post-wildfire
resource allocation. Figure 1 presents the ap-

proach of this study, including data collection, ex-
ploratory data analysis, development of the model
and inference analysis, details of which are dis-
cussed in the following subsections.

Fig. 1.: Study Approach

2.1. Data Preparation
2.1.1. Data Collection

We collected data on wildfire incidents, their im-
pacts, and socio-demographic information.
SIT209 Dataset – This dataset comprises infor-
mation regarding wildfire incidents, their location,
spread, burnt area, impacts on structures, and fa-
talities. The data contains 31 relevant features for
504 incidents in CA, 128 in AZ, 104 in CO [3].
US Census Bureau- From this data source, we
collected 26 socio-demographic, economic, and
household-related factors like total population,
educational attainment, elderly population, dis-
abled population, race-ethnicity, poverty, crowded
households, no vehicle households, etc. [15].
National Interagency Fire Center (NIFC) data

- Information on personnel deployed in rescue
operations and recovery costs are obtained from
this data source [16].

2.1.2. Data Pre-processing

Various steps used in data pre-processing are dis-
cussed below.
Data Cleaning: After consolidating the dataset,
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Fig. 2.: Quantile Distribution of Burnt Area for
California, Arizona and Colorado

different data cleaning techniques were used. For
imputing missing values, we used statistical im-
puting methods like linear interpolation, moving
average, and machine learning algorithmsa.
Determining Response Variables and Fea-

tures: Variables related to post-wildfire resource
allocation—Cost for Recovery and Resource Per-
sonnel for Rescue Operations—are considered as
the response variables. Since our response vari-
ables are available at county-level, we conducted
out study as county-level. The final dataset com-
prises a total of 63 predictors depicting socio-
demographics and impacts of wildfires from
2015-2022. We adopted the correlation screening
method [17] and combined relevant variables to
reduce the data dimensionality.
2.1.3. Exploratory Data Analysis

The quantile distributions of the wildfire impact
variable, e.g., burnt area (see Figure 2) show a
sharp steep slope in the the third quantile (≥ 75
percentile), indicating a heavy flat-tailed distribu-
tion. This trend highlights the underlying different
characteristics of wildfire damage and consequent
resource allocation. Thus, this study focuses on
the extreme wildfire incidents (falling in the fourth
quantile), hereafter referred to as the “High-risk
Cohort”; containing a total of 182 observations in
different states (CA: 123; AZ: 37; CO: 22).
2.1.4. Oversampling Method:

As we had limited samples across AZ and CO, we
have used oversampling technique like Synthetic

aIn ML-based imputation, all variables except the missing are
treated as independent variables to predict the missing value

Minority Over-sampling Technique for Regres-
sion. This interpolates data points in between the
existing data points to generate synthetic data for
the model. We have generated 100 samples across
high-risk cohorts of AZ and CO [18].
2.1.5. Modeling Approach

Overview of Statistical Learning

Statistical learning emerged due to a multi-
disciplinary approach to problem-solving using
mathematics, statistics, and computer science
[19]. Supervised statistical learning aims to deter-
mine the relation between the variable of interest
(response variable) y and n-dimensional vector x
by determining function f , which we can write as:
y = f(x) + ε, where ε is irreducible error. When
there is only one response variable y, the tech-
nique is named univariate supervised learning. In
contrast, the method is called multivariate learn-
ing if there is more than one response variable(
y). In this study, we implemented both univariate
and multivariate supervised modeling techniques
to investigate if the covariance between the two
different response variables representing resource
allocation contributes to the overall accuracy of
the population health inequity assessment and the
prediction models [20]. We trained a library of
univariate and multivariate models—linear regres-
sion, decision tree, random forest, gradient boost-
ing, AdaBoost, XGBoost, and Elastic Net. We
would illustrate in the result section that the model
gradient boost imparts statistically significant per-
formance improvement compared to other models
for both response variables for the high-risk co-
horts of California and Arizona (except Colorado,
where XGBoost has comparable results for Cost
for Recovery variable). For comprehensive perfor-
mance on this dataset, we have chosen gradient
boost for insight generation.
Gradient Boosting: Gradient Boosting is a fun-
damental boosting b algorithm, starting with an
initial prediction, which is the mean of the target
followed by building the tree iteratively, com-
puting the gradients in each round, followed by
training the decision tree on these gradients, up-

bmultiple sequential weak learner trees to combine into a
strong learner with higher predictive accuracy [21]
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dating the model by adding the new tree’s predic-
tions(adjusted by learning rate). The final model
would be the additive combination of all the trees
[22, 23].

Multivariate and univariate regression models
are developed after implementing oversampling
methods like SMOTER and resampling tech-
niques like bootstrapping. For Arizona and Col-
orado, we used this technique to create the model,
which optimized the model performance by 32%
and 60 % compared to the smaller original sam-
ple size. We selected the best model using bias-
variance trade-off and cross-validation techniques
like leave-one-out cross-validation (LOOCV)c.
All the models were compared with the mean-
only model, which is used a baseline for statistical
analysis [20].

3. Results

3.1. Inequities in Resource Allocation

We investigated each state’s resource allocation
for high-risk cohorts to identify the key factors
indicating underlying inequities.

3.1.1. California

We analyzed the high-risk cohort using univariate
and multivariate predictive analyses to understand
the associations between resource variables and
socioeconomic factors. Our study shows that the
multivariate gradient boosting algorithm outper-
forms other models for both the Resource Person-
nel for Rescue Operations (see Figure 3) and Cost
for Recovery (see Figure 4).
Key predictors of resource allocation: Variables

like crowded households and educational attain-
ment are critical socio-economic factors associ-
ated with resource personnel for rescue opera-
tions. Similarly, economic and educational status
are found to be correlated with cost for recovery.
Resource Personnel for Rescue Operations: The
partial dependence plots (PDPs) (see Figure 5)
show that counties with higher populations living
in crowded households and with lower educa-
tional attainment receive lower resource person-

cfor smaller sample size one data point for validation and rest
for training the dataset

Fig. 3.: Resource personnel for Rescue Operation
in CA: Model performance comparisons

nel for rescue operations. This trend (with mi-
nor fluctuations) highlights the inequities in post-
wildfire resource allocation where marginal com-
munities (living in crowded households or educa-
tionally backward) receive fewer rescue personnel
than their wealthier counterparts.
Cost for Recovery: The PDPs (Fig. 6) show
that counties having higher percentages of below
poverty level population and with lower educa-
tional attainment observe lower cost for recov-
ery. This illustrates that the economically and
educationally disadvantaged communities, lack-
ing financial resources, experience inadequate re-
sources in the aftermath of severe wildfire inci-
dents.
3.1.2. Arizona

From Figs. 7 and 8, we observe that multivariate
gradient boost outperforms other models of re-
source personnel for rescue operations and cost
for recovery respectively and selected for infer-
ence analysis.

Fig. 4.: Cost for Recovery in CA: Model perfor-
mance comparisons
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Fig. 5.: Relationship of key predictors with re-
source personnel for rescue operations in CA (the
grey lines indicates 95% confidence interval and
the dots show the concentration of data points for
all the PDP plots)

Key predictors of resource allocation: Racial
composition and educational attainment are found
to be the key predictors of resource allocations in
the aftermath of severe wildfire events in AZ.
Resource personnel for rescue operations: Fig. 9)

Fig. 6.: Relationship of key predictors with cost
for recovery in CA

Fig. 7.: Resource personnel for rescue operations
in AZ: Model performance comparison

Fig. 8.: Cost for Recovery in AZ: Model perfor-
mance comparison

Fig. 9.: Relationship of key predictors with re-
source personnel for rescue operations in AZ

shows that in AZ, counties with higher percent-
ages of population with lower educational attain-
ment and Black or African American population
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Fig. 10.: Relationship of key predictors with cost
for recovery in AZ

receive a higher number of resources personnel,
indicating the prevalence of adequate recovery ef-
forts. Cost for recovery: As observed from Fig. 10,
significant uncertainty persists in the relationship
of the key predictor, percentage of population with
no high school diploma and the cost for recovery.
The ambiguity and randomness in the trend fail
to conclude a distinct relationship. However, we
see a slight positive trend in the PDP of Black
or African American population with the Cost
for recovery that again reemphasizes our previ-
ous finding that AZ provides adequate resources
to its marginalized communities in the aftermath
of a severe wildfire. Arizona’s hazard mitigation
policies ensure equity in resource allocation by
developing targeted recovery plans for marginal,
tribal, and educationally disadvantaged communi-
ties [24].
3.1.3. Colorado

Figs. 11 and 12 show that the multivariate gradient
boosting outperforms all other models for both
variables. Though, for the variable, Cost for Re-
covery, XGboost also shows a slightly improved
outcome than gradient boosting, the difference
is not statistically significant. Therefore, gradient
boost has been chosen for generating insights into
its robust performance across all the variables.

Key predictors of resource allocation: The post-
wildfire resource allocation in CO strongly cor-

Fig. 11.: Resource personnel for rescue operations
in CO: Model performance comparison

Fig. 12.: Cost for Recovery in CO: Model perfor-
mance comparison

relates with the racial composition, percentage of
disabled population, and household variables like
living arrangements.
Resource personnel for rescue operations: From
Fig. 13, both critical variables, i.e., Per 100000
Population Black or African American, Per
100,000 Population with No High School Diploma
show an ambiguous trend for this response vari-
able pertaining to uncertainty failing to show any
distinguished patter. However, the overall trend
inclines to a positive association.

Cost for Recovery: Fig. 14 shows that the driv-
ing variables, like the proportion of Black or
African American Population, show a steep de-
clining trend with cost allocation while the multi-
ple household apartment shows an overall positive
correlation with randomness due to uncertainty.
3.2. Comparative Inequity Analysis

across the US States

Our study identified that counties with higher pop-
ulation of less educated people are at a high risk of
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Fig. 13.: Relationship of key predictors with Re-
source personnel for rescue operations in CO

receiving less post wildfire resources in terms of
both rescue personnel and funding in CA, whereas
counties with similar demographic composition in
AZ and CO are at a higher risk of receiving less
recovery funding, but overall received adequate
rescue personnel. Similarly, counties with higher
population of Black or African American origin
people are at a higher risk of receiving less re-
sources for post wildfire recovery in terms of both
rescue personnel and funding in CA, where such

Fig. 14.: Relationship of key predictors with Cost
for Recovery in CO

counties in CO are only at a higher risk of receiv-
ing less funding for recovery. On the contrary, in
AZ such counties with higher population of Black
or African American origin people is observed
to receive adequate recovery resources. Counties
with higher population of crowded households in
CA are at a higher risk of receiving less rescue
personnel, whereas this variable was not found to
be an important predictor for AZ and CO. Overall,
we found that the inequities in wildfire resource
allocation is more prominent in CA compared
to AZ and CO. One of the underlying reasons
might be the sprawling of communities into the
WUI regions in CA due to urban housing prices,
exposing a higher population to wildfire risk in
CA compared to the other states.

4. Conclusion

The study analyzes the inequities present in wild-
fire resource management across the southwestern
US states—CA, AZ, and CO. Our data-driven
analysis highlights the stark disparity in rescue
resource allocation in the aftermath of devastating
wildfires. With the increasing intensity and fre-
quency of wildfires, the authorities should develop
a policy framework that is not solely reliant on
economic priorities but also includes social equity
in the decision making as marginalized communi-
ties often need more attention to cope with the dis-
asters. Our study addresses the need for targeted
and equitable post-wildfire resource allocation to
streamline data-informed decision-making.
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