
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P9570-cd

Robot Fault Detection using Digital Twin and Deep Learning

Haibo Li
Laboratoire Génie Industriel, CentraleSupélec, Université Paris-Saclay, France.
E-mail: haibo.li@centralesupelec.fr

Wenxuan Hu
Sorbonne-Université, France. E-mail: wenxuan.hu@etu.sorbonne-universite.fr

Zhiguo Zeng
Chair of Risk and Resilience of Complex Systems, Laboratoire Genie Industriel, Centralesupelec, Université
Paris-Saclay, France. E-mail: zhiguo.zeng@centralesupelec.fr

Reliability and lifetime of robots is critical for modern manufacturing systems, as robots have been widely used
in manufacturing, and their failure could lead to substantial financial losses. Predictive Maintenance (PdM) has
emerged as an effective strategy, utilizing historical data and prognostic models to anticipate maintenance needs.
Digital twins simulate the behavior of real systems and connect to the real system using sensors in real-time, and
have shown potentials to booster the performance of predictive maintenance algorithms. In this paper, we present
an open-source demonstration platform of using digital twin for robot PdM. A data-driven digital twin is developed
first for a robot to predict its temperature during operation. By leveraging time-series data collected in real-time,
including motor temperature, voltage, and position, a data-driven algorithm is developed to detect abnormality
in motor temperature response. An innovative Recursive Prediction Update (RPU) technique is proposed, which
replaces fault-contaminated data with predicted values in real-time, significantly enhancing accuracy of abnormility
detection. Results show that the integration of Digital Twins and RPU improves fault detection performance, offering
valuable insights for predictive maintenance under limited failure data conditions.

Keywords: Digital twin, predictive maintenance, robotic arm, deep learning, fault diagnosis.

1. Introduction

Robotic systems are integral to automated manu-
facturing, requiring high reliability and extended
lifespans. Unexpected robot malfunctions cause
substantial financial losses. For example, costs
due to unexpected breakdown of robots are es-
timated at 100,000 to 200,000 euros per day
(Mathur et al., 2001). Maintenance expenses ac-
count for 60% to 70% of production system life-
cycle costs (Dhillon, 2006), making maintenance
optimization critical for operations efficiency and
competitiveness of production systems.

To address these challenges, Predictive Mainte-
nance (PdM) has been proposed, leveraging his-
torical data and prognostic models to predict op-
timal maintenance times. PdM includes diagnos-
tics, which analyze failure causes, and prognos-
tics, which model degradation processes to es-
timate Remaining Useful Life (RUL) (Aivaliotis

et al., 2021). However, the effectiveness of PdM
is often constrained by limited historical failure
data. Digital twins, a key Industry 4.0 technology
(Fuller et al., 2020), offer a promising solution by
simulating system behavior and collecting real-
time data through condition monitoring. These
simulations can train machine learning models
for fault diagnosis and RUL prediction (Ellefsen
et al., 2019). Reference Aivaliotis et al. (2019)
combined degradation models with digital twins
of industrial robots to develop PdM models. How-
ever, existing studies primarily explore integration
potential, lacking detailed insights into advanced
machine learning for fault detection and RUL
prediction, as well as system-level maintenance
planning and scheduling.

In this study, we build an open-source demon-
stration platform that combined digital twins with
AI algorithms to explore fault diagnosis tech-

1554



1555Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

niques under conditions of limited historical fault
data (Court et al., 2024). By considering the tem-
poral dependencies in time series, a data-driven
algorithm is developed that utilizes historical data
under normal operating conditions, including mo-
tor voltage, temperature, and position, as inputs
to detect whether the temperature response of a
specific motor at a given moment is normal. This
study introduces an innovative application of Re-
cursive Prediction Update (RPU), which employs
predicted data to iteratively correct input data in
real-time, significantly enhancing prediction accu-
racy. The findings of this study provide valuable
insights and a reference for enhancing predictive
maintenance under conditions of limited historical
fault data.

2. A demonstration platform for robot
PdM with digital twins

The structure of the platform is shown in Fig.1,
and the structure of the robot is shown in Fig.2.
Additional details can also be found on GitHub
at the following link:
https://github.com/sonic160/digital twin robot.
The robotic arm is controlled by a Raspberry
Pi running Ubuntu 18.04 and equipped with an
HD 120° Wide Angle Camera for target recogni-
tion and tracking. Featuring six degrees of free-
dom driven by Smart Serial Bus Servos, the arm
is topped with a gripper for grasping objects.
Coordinated motor operation enables tasks like
goods transfer, with each motor providing feed-
back on position, voltage, and temperature sig-
nals, amounting to 18 features. In addition to
the physical robotic entity, we have developed
a virtual simulation model of the robot, which
connects to the physical entity. Through sensors
and data streams, it retrieves the real-time opera-
tional status of the physical robot and visualizes
it in a virtual environment, providing real-time
visualization of the physical system.

Communication between the physical and vir-
tual systems is achieved via ROS, where real-
time data is published by the physical robot and
subscribed to by the virtual robot. Additionally,
a MATLAB-based Condition Monitoring Sys-
tem (CMS) visualizes data streams, stores times-

tamped data, and tracks the equipment’s health
status, aiding in anomaly detection and proactive
maintenance. This system facilitates data-driven
decision-making to prevent equipment failures
and optimize performance.

3. Dataset description

3.1. Experimental Design and Data
Collection

The robot is programmed to move in a random
pattern that simulates a real pick-and-place oper-
ation. To collect training data under normal oper-
ation conditions, the robotic arm is programmed
to perform 1,000 pick-and-place tasks. Each con-
sisting of five movements: returning to the initial
position, moving to the pick-up location, grasping
the goods, transporting them to the placement
location, and releasing them. The process repeats
for the next task, ensuring efficient and compre-
hensive data collection.

Pick-up and placement positions are randomly
generated within the robot’s 3D workspace, using
inverse kinematics to determine the required tra-
jectories. This approach enriches the dataset with
varied scenarios. Data are collected at a frequency
of 10 Hz, resulting in a time series of 104,000
data points, each containing 18 features (position,
voltage, and temperature signals from six motors),
over a duration of 10,400 s.

3.2. Data Preprocessing and Failure
Injection

First, the collected time series data were split into
training, validation, and test sets in a ratio of
7:1.5:1.5, corresponding to 72,800, 15,600, and
15,600 data points, respectively. Importantly, the
temporal order of the data was preserved during
the split to maintain its time dependency.

Since the collected data represents normal oper-
ating conditions, fault patterns were simulated to
study fault detection capabilities. In this study, we
simulated the temperature variations of a motor
during a fault, specifically the process where the
motor stalls for a certain period due to a fault
and then resumes normal operation. We selected
motor 6, located at the base of the robotic arm, as
the target for this analysis. The fault temperature



1556 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Fig. 1.: Open-source demonstration platform for predictive maintenance of robots using digital twins

Fig. 2.: ArmPi robotic arm features and components

variation was modeled based on a semi-empirical
formula as Eq.1, as shown in Fig.3. A total of
20 faults were simulated and randomly injected
into the temperature features of motor 6 in the test
set, resulting in 667 fault points, to evaluate the
model’s fault detection performance.

4. Data-driven digital twin modeling
and fault diagnosis

In this section, we first develop a data-driven dig-
ital twin model to predict the operational temper-
ature of the robot under normal operation condi-
tion. The digital twin model is, then, used to detect
failure patterns.



1557Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

T (t) =

⎧⎨
⎩
Tenv +ΔTmax

(
1− e−

t
τ1

)
, 0 ≤ t ≤ trise,

Tenv + (Trise(trise)− Tenv) e
− t−trise

τ2 , t > trise,
(1)

where, Tenv: ambient temperature, ΔTmax: maximum temperature rise, τ1: time constant for heating, τ2:
time constant for cooling, trise: end time of the heating phase.

Fig. 3.: Semi-empirical motor temperature curve

4.1. Digital twin modeling

Since the collected data are high-frequency time
series with significant temporal dependencies, the
parameter changes between consecutive points are
minimal. Such subtle variations are insufficient
for determining whether a single point represents
a fault. Therefore, to better capture the tempo-
ral dynamics of the data, we adopted a sliding
window approach to segment the time series into
Input Window and Prediction Window, thereby
constructing dataset samples.

Specifically, one typical sample’s Input Win-
dow is defined as shown in Eq. 2:

{X(t′) | t′ ∈ [t− 39, t− 10]} (2)

and one typical sample’s Prediction Window is
defined as shown in Eq. 3:

{T6(t
′) | t′ ∈ [t− 9, t]} (3)

Here, X(t′) represents the feature matrix at
current point t′, including the following features
for six motors:

• Ti(t
′): The temperature of the i-th motor

(i = 1, 2, . . . , 6),
• Pi(t

′): The joint position of the i-th mo-
tor,

• Vi(t
′): The working voltage of the i-th

motor.

With this design, the Input Window captures the
past 30 points of multi-motor feature data, while
the Prediction Window represents the trends for
the next 10 points. Notably, the last point of the
Prediction Window, T6(t), corresponds to the cur-
rent point t, which is used to determine whether
the temperature exceeds the threshold.

During the preprocessing, we applied a sliding
window operation to the time series with a step
size of 1: {X(t′) | t′ ∈ [t − 39, t − 10]} →
{X(t′) | t′ ∈ [t−38, t−9]} → . . ., gradually gen-
erating the next set of training samples. The same
preprocessing was applied to the training, valida-
tion, and test sets, resulting in 72,761, 15,561, and
15,561 samples, respectively.

Next, we trained a regression model using the
training set data and evaluated its fitting per-
formance on the validation set. During evalua-
tion, the model predicts the Prediction Window
{T6(t

′) | t′ ∈ [t − 9, t]} based on the Input
Window {X(t′) | t′ ∈ [t − 39, t − 10]}. Since
we only focus on the last point of each sample, the
predicted value of the last point in the Prediction
Window, T̂6(t), was compared to the true value
T6(t), and the residual ε is defined as:

ε = ‖T̂6(t)− T6(t)‖ (4)

4.2. LSTM modeling

In this paper, we use an LSTM as the deep
learning model used for the regression model-
ing. LSTM is an effective and commonly used
algorithm for processing time series data. It is an
improved version of recurrent neural networks,
as depicted in Fig. 4. Compared to traditional
RNN, it introduces the gate mechanism, allowing
it to better handle long-term dependencies and



1558 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Fig. 4.: Long Short-Term Memory Architecture

prevent issues of vanishing or exploding gradients
(Hochreiter, 1997).

Assuming that there are h hidden units, the
batch size is n, and the input feature size is d, so
the input is Xt ∈ R

n×d, the previous time step’s
hidden unit is Ht−1 ∈ R

n×h, at this time step
t, the input gate is It ∈ R

n×h, the forget gate is
F t ∈ R

n×h, the output gate is Ot ∈ R
n×h. The

details are as follows:

It = σ (XtW xi +Ht−1W hi + bi) (5)

F t = σ (XtW xf +Ht−1W hf + bf ) (6)

F o = σ (XtW xo +Ht−1W ho + bo) (7)

where, W xi, W xf , W xo ∈ R
d×h and W hi,

W hf , W ho ∈ R
h×h are weight parameters, W i,

W f , W o ∈ R
1×h are the bias parameters.

Another component is the candidate memory
cell C̃t ∈ R

n×h. Unlike the gates, the candidate
memory cell utilizes the tanh activation function.

C̃t = tanh (XtW xc +Ht−1W hc + bc) (8)

where, W xc ∈ R
d×h and W hc ∈ R

h×h are
the weight parameters, bc are bias parameters. In
this neural network structure, the input gate It

controls how much new data from C̃t is adopted,
while the forget gate F t determines how much
data from the memory unit Ct−1 is retained. This
mechanism helps better capture long-range depen-
dencies in sequences and alleviates the issue of
gradient explosion:

Ct = F t

⊙
Ct−1 + It

⊙
C̃t (9)

Finally, we need to define how to compute the
hidden state Ht ∈ R

n×h, which is where the
output gate comes into play. In the long short-term
memory network, it is simply the tanh transforma-
tion of the memory unit, controlled by the output
gate. This ensures that the values of Ht always
remain within the interval (−1, 1):

Ht = Ot

⊙
tanh(Ct) (10)

In this study, the selected hyperparameters of
the model are shown in Table 1.



1559Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

Table 1.: Model hyperparameters and descriptions

Parameter Name Value Description

Input dim / d (30, 18) The number of input features for each time step in
LSTM.

Hidden dim / h 256 The number of hidden units in the LSTM layer,
determining the hidden state size.

Output dim (10, 1) The number of future time steps to predict.
Num layers 3 The number of stacked LSTM layers in the model.
Dropout 0.2 The dropout rate applied between LSTM layers to

prevent overfitting.
Epochs 100 The maximum number of training epochs.
Learning rate 0.0001 The learning rate for the Adam optimizer.
Loss function MSELoss The loss function used to compute the error between

predictions and true values.
Optimizer Adam The optimizer used to update model parameters dur-

ing training.

4.3. Fault detection based on digital twins

The maximum temperature residual observed in
the validation set is defined as the Maximum
Residual Threshold εmax:

εmax = max ‖T̂6(t)− T6(t)‖ (11)

which represents the upper bound of the predic-
tion error for motor 6’s temperature on the vali-
dation set. A smaller threshold εmax indicates a
stronger representational capability of the model
for the validation data.

Therefore, when the regression model is tested
on the test set with injected faults, if the residual of
the last point in the Prediction Window satisfies:

‖T̂6(t)− T6(t)‖ > εmax (12)

the current time point T6(t) can be identified as
anomalous. Conversely, it is considered normal
data without failure.

Undoubtedly, when testing on the test set, as
faults have already been injected into the test set,
if the data in the input window is contaminated
by the injected fault data, i.e., introducing the
temperature rise trend of the injected fault, this
will inevitably lead to inaccurate predictions of
the prediction window. Specifically, this results
in predicted values being overestimated, causing
T̂6(t) to approach T6(t). Consequently, certain

data points may fail to be detected as faults, lead-
ing to missed alarms. Therefore, when ‖T̂6(t) −
T6(t)‖ = εt > εmax, it can be considered that
the input window has been contaminated by fault
data.

To address this issue, once εt > εmax, we
replace {T6(t

′) | t′ ∈ [t − 14, t − 10]} with
{T̂6(t

′) | t′ ∈ [t − 14, t − 10]}, which can be
regarded as eliminating the contaminated data in
the input window. Thus, the input window at the
point t becomes: {T (t′) | t′ ∈ [t− 39, t− 15]} ∪
{T̂6(t

′) | t′ ∈ [t−10, t−14]}. This online predic-
tion correction process could be called Recursive
Prediction Update (RPU).

5. Results

Two widely used regression performance indices,
R Square (R²) and Mean Squared Error (MSE),
along with four commonly used classification
metrics, Precision, Recall, F1-Score, and Accu-
racy, are utilized to comprehensively evaluate the
performance of the applied algorithm.

The loss during the training process of the
LSTM model is shown in Fig. 5. From this loss
curve, the model appears to be gradually con-
verging, with consistent performance on both the
training and validation sets. There are no obvious
signs of overfitting or underfitting. This trend in-



1560 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Fig. 5.: Train loss and validation loss for training
process

Fig. 6.: The residuals distribution of validation set

dicates that the model training process is stable
and effective. The residuals between the predicted
and observed values on the validation set are also
shown in Fig.6. By observing Fig.6, it is obvious
that most of the residuals fall within the range of
[-2.5, 2.5]. Based on Eq. 11 and for safety margin
considerations, it can be concluded that εmax = 3.

Next, the model is applied to the test set injected
with faults, with the data construction process ref-
erenced in Section 3.2. A total of 677 fault points
were injected into the test dataset, which consists
of 15,561 samples, meaning there are a total of
15,561 last points across all samples. During the
application of the model for regression predictions
on the test set, once the residual of T̂6(t) and T6(t)

exceeds εmax, the point is labeled as a predicted
fault and compared with the true labels of the
injected faults.

To mitigate the impact of fault injections on
prediction performance, Recursive Prediction Up-

date (RPU) is applied. Specifically, when the
residual exceeds εmax, the last five points of motor
6’s temperature in the current input window are
replaced with the previously predicted values for
these points. This replacement reduces the con-
tamination of the input window caused by fault
data, thereby enhancing the model’s classification
performance. The impact of applying or not apply-
ing RPU on prediction performance is illustrated
in Fig. 7 and Fig. 8, the comparison of classifica-
tion metrics is shown in Fig. 9.

Fig. 7.: The confusion matrix of test set without
RPU

Fig. 8.: The confusion matrix of test set with RPU

The results demonstrate that applying Recur-



1561Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

sive Prediction Update (RPU) significantly en-
hances the fault detection performance of the
model. With RPU, the model achieves higher
accuracy (99.11%), precision (96.38%), recall
(82.57%), and F1-score (88.94%) compared to the
scenario without RPU. The reduction in false neg-
atives and false positives, as observed in the con-
fusion matrices, underscores the effectiveness of
RPU in mitigating the impact of fault data contam-
ination on the input window. These improvements
validate the potential of RPU as a robust strategy
for improving predictive maintenance systems,
ensuring more reliable fault detection in robotic
systems.

Fig. 9.: Comparison of classification metrics with
and without RPU on the test set

6. Conclusions

This study explores a fault detection approach for
robotic arm motors through a data-driven digital
twin and deep learning. The proposed method
utilizes a data-driven model to predict motor
temperature anomalies based on multi-sensor in-
put. The introduction of the Recursive Prediction
Update (RPU) mechanism further enhances the
model’s prediction accuracy by mitigating the in-
fluence of fault-contaminated input data. Experi-
mental results demonstrate that the proposed ap-
proach achieves high classification performance,
with clear improvements observed when RPU is
applied. This study provides a practical frame-

work for predictive maintenance in scenarios with
limited fault data, offering valuable insights for
advancing fault diagnosis and maintenance plan-
ning in robotic systems.

Acknowledgement

The research of Zhiguo Zeng is partically funded
by the French Research Council under contract
number ANR-22-CE-10-0004 (Project DFT).

References

Aivaliotis, P., Z. Arkouli, K. Georgoulias, and
S. Makris (2021). Degradation curves inte-
gration in physics-based models: Towards the
predictive maintenance of industrial robots.
Robotics and computer-integrated manufactur-
ing 71, 102177.

Aivaliotis, P., K. Georgoulias, and G. Chrys-
solouris (2019). The use of digital twin for pre-
dictive maintenance in manufacturing. Interna-
tional Journal of Computer Integrated Manu-
facturing 32(11), 1067–1080.

Court, K. M., X. M. Court, S. Du, and Z. Zeng
(2024). Use digital twins to support fault diag-
nosis from system-level condition-monitoring
data.

Dhillon, B. S. (2006). Maintainability, mainte-
nance, and reliability for engineers. CRC press.

Ellefsen, A. L., V. Æsøy, S. Ushakov, and
H. Zhang (2019). A comprehensive survey
of prognostics and health management based
on deep learning for autonomous ships. IEEE
Transactions on Reliability 68(2), 720–740.

Fuller, A., Z. Fan, C. Day, and C. Barlow (2020).
Digital twin: Enabling technologies, challenges
and open research. IEEE access 8, 108952–
108971.

Hochreiter, S. (1997). Long short-term memory.
Neural Computation MIT-Press.

Mathur, A., K. F. Cavanaugh, K. R. Pattipati, P. K.
Willett, and T. R. Galie (2001). Reasoning and
modeling systems in diagnosis and prognosis.
In Component and Systems Diagnostics, Prog-
nosis, and Health Management, Volume 4389,
pp. 194–203. SPIE.


