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A safety model for identifying hazards and predicting their possible consequences in an industrial facility is 
proposed. Complex cause-effect relations between safety-related events, starting from the initial ones, through the 
intermediate, to the final, are represented in the form of a Bayesian network. The input data originate from sensors 
and meters installed in safety-critical locations. Using the Bayesian network methodology, the impending hazards, 
accidents, or machinery breakdowns can be predicted from symptoms indicated by the monitoring devices. Also, 
the "reverse analysis" of the network can establish the root causes of these undesired events so that a preemptive 
maintenance can be carried out in order to avoid them. For illustration, a simplified safety model of a biogas plant 
is presented along with its basic analysis. Although there is abundant literature on Bayesian networks in the safety 
and reliability context, much of it is limited to theoretical considerations or provides only general guidelines for the 
construction of such networks. Thus, publications reporting specific applications of this methodology are rather rare. 
The current paper aims to contribute to filling this gap. 
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1. Introduction 
This paper proposes a method of analyzing the 
safety hazards in a biogas plant or any industrial 
facility, using a Bayesian network (BN) 
paradigm. Biogas plants are becoming 
increasingly used for the purpose of combined 
electricity and heat production. The share of fossil 
fuels (oil, natural gas, coal) in energy production 
gradually decreases, mainly due to environmental 
issues, but also for economic reasons such as 
increasing costs of their extraction, transportation 
and processing, and, last but not least, taxation of 
CO2 emissions in a number of countries. This 
results in switching to alternative energy sources, 
one of which is biogas obtained in the process of 
anaerobic digestion (fermentation) of biomass. 
The biogas production facilities or biogas plants 
are mainly built in rural areas, where biomass in 
large quantities is easily available and doesn’t 

need to be transported over long distances. They 
serve as distributed energy generation units 
increasing the reliability of energy supply on local 
level, especially in the event of an outage in the 
main power grid. When connected to the central 
grid, biogas plants contribute to the country-wide 
energy production and supply system. Although   

undoubtedly an important energy source, they 
also pose some specific security threats, both to 
the personnel and resources of the facility. 

The issue of biogas plant safety has been 
widely addressed in the subject literature, which 
can roughly be divided into three categories. 
Publications in the first category define various 
hazards specific to biogas plants and formulate 
safety measures for their construction and 
operation (Marrazzoa and Mazzini 2024, 
Scarponi et al. 2015). Those in the second 
describe possible accident scenarios or report 
hazardous or destructive events that have 
occurred in biogas facilities and analyze their root 
and intermediate causes (Hegazy et al. 2024, 
Moreno et al. 2016, Stolecka and Rusin 2021). 
The third category includes descriptions and 
analyses of biogas plants safety models aimed at 
estimating various statistics related to dangerous 
incidents, as well as determining their causes and 
preventing future occurrences (Moreno et al. 
2018, Trávníček et al. 2018, Torretta et al. 2015, 
Lu et al. 2020). The latter is not concerned with a 
biogas plant, but gives an example of applying 
BN-based risk analysis in a similar environment. 
Since this paper does not aim to be a 
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comprehensive literature review, only a few 
example works from each category are 
referenced.  

The current paper can be classified into the 
third category. Its author attempts to build a 
comprehensive safety model of a biogas facility, 
depicting cause-effect chains of events leading to 
hazardous situations and destructive or 
catastrophic consequences. The model has the 
form of a BN illustrating direct dependencies 
between individual events (the events are 
represented as nodes of a direct acyclic graph 
whose edges connect directly dependent events). 
It is divided into two sub-models, one for the 
biogas production facility and the other for the 
upgrading unit. These sub-models along with 
guidelines for their analysis are presented in 
sections 3 and 4 respectively. They are preceded 
by Section 2 that recalls BN basics, introduces the 
concept of generalized BN and provides 
guidelines for its probabilistic cause-effect 
analysis. Section 5 contains concluding remarks 
and prospects for future research and is followed 
by the list of references. 

2. Generalized Bayesian Networks and their 
Analysis  

BNs are graphical representations of causal 
dependencies between multiple inter-related 
events occurring within a complex system 
(Scutari and Denis 2021, Kjaerluff and Madsen 
2013, Koller and Friedman 2009). A “classical” 

BN is a direct acyclic graph (DAG) whose nodes 
represent random variables or events and links 
represent direct dependence relations between 
parent and child variables or events. A BN node 
can have multiple parent nodes (unlike a gate in a 
fault tree) and child nodes. Each node  is assigned 
the conditional probability table (CPT) whose 
single entry stores the probability that the random 
variable represented by this node takes one of its 
possible values, conditioned by a combination of 
possible values of the parent variables. Clearly, 
the number of entries in a CPT is large if the  
variables have many possible values (the number 
of entries is equal to the product of the numbers 
of the parent and child variables’ values). 

However, it may happen that a child variable is a 
(logical) function of its parent variables, defined 
by an algebraic formula. In such a case the 
(possibly large) CPT can be replaced by a 

(technically equivalent) equality that defines the 
conditional probabilities using that formula. 
Networks in which the CPTs of selected (or all) 
nodes can be represented as algebraically defined 
functions will be referred to as generalized BNs. 
Also, the CPTs or the respective functions in such 
networks can be time-related, as explained in 
Section 4. For better understanding, let us 
consider a simple BN shown in Fig. 1.  
 

Fig. 1. A simple BN 
 
Its nodes represent the following events: 1) fire, 
2) activation of automatic sprinkler, 3) use of 
manual extinguisher and 4) fire quenched. X1, X2, 
X3 and Y are the corresponding (binary) random 
variables. Table 1 is the CPT for the variable X2. 
 

Table 1. CPT for X2 

X1 X2 Pr(X2=b | X1=a) 
1 1 0.95 
1 0 0.05 
0 1 0 
0 0 1 

 
The above CPT converts to the following 
expression: 

 

 

      (1) 

The CPTs of X3 and Y are defined by the following 
formulas: 

 

 

     (2) 

and 
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    (3) 

where a,b,c,d�{0,1}. As follows from Eq. (2), in 
the case of fire and failed sprinkler, manual 
extinguisher is used with probability 0.98, or is 
not used with probability 0.02. If there is no fire 
or the sprinkler is activated, the extinguisher is not 
used. Further, according to Eq. (3), Y depends  
deterministically on X2 and X3, i.e. the 
probabilities in its CPT are either zeroes or ones. 
Such CPTs can be called as deterministic and  
those with arbitrary probabilities - as  stochastic. 

Eqs. (1)-(3) can be generalized to multivalued 
variables and other scenarios. Considering Eqs. 
(1) and (2), we conclude that not only 
deterministic  dependence between a node and its 
parents can be expressed algebraically, but also 
stochastic one. However, it should be pointed out 
that only CPTs exhibiting a regular pattern can be 
defined by simple algebraic formulas, hence not 
all CPTs can be thus represented.  

CPTs or functions defining the conditional 
probabilities are necessary for quantitative 
probabilistic analysis of BNs, which involves 
computing probabilities of resulting events given 
the causing events or those of causing events 
given the resulting ones. These probabilities are 
essential for the cause-effect analysis of the 
events occurring in the system modeled by a BN. 

For illustration, let us compute the 
probabilities Pr(Y=d|X1=a) and Pr(X1=a|Y=d). We 
have: 

  

  

  

   (4) 

where �b,c denotes the sum over all values of 
(X2, X3). The last equality follows from one of the  
basic properties of BNs, i.e. the probability that a 
variable takes a specific value is determined by 

the values of its parents. Thus, to compute 
Pr(Y=d|X1=a), we need Eq. (4) and CPTs of X2, X3 
and Y defined by Eqs. (1)-(3). Note that, 
proceeding as in Eq. (4), we can derive a recursive 
formula for the probability Pr(Y=b | X=a), where 
Y is a non-root variable of an arbitrary BN and X 
is one of root variables located above Y. This 
formula will involve all combinations of Y’s 

parent’s values and the respective entries from the 

Y’s CPT (possibly algebraically defined). In 
general, Eq. (4) adjusted to a particular BN can be 
used to compute the probabilities 
Pr(Y1=b1,…,Yk=bk | X1=a1,…,Xj=aj), where 
Y1,…,Yk are non-root variables and X1,…,Xj are 
root ones. Such probabilities are useful for  
detailed analysis of a BN. 

Now let us compute the “reverse” probability 

Pr(X1=a|Y=d). We have: 

  

    (5) 

where �x denotes the sum over all values of X1. 
Thus, to compute Pr(X1=a | Y=d), we need Eq. (4) 
and the probabilities Pr(X1=a) for all values of X1. 
These probabilities are assumed to be given. 

Eqs. (4) and (5) demonstrate the computing 
technique to find the conditional “forward” and 

“reverse” probabilities in a generalized BN. The 
presented approach eliminates the necessity to 
store a large CPT if it admits an algebraic 
representation. This saves memory and 
accelerates the computations. Though there exists 
abundant literature on multi-aspect analysis of 
BNs (Fan et al. 2024, Kitson et al. 2023, Darwiche 
2022, Yu et al. 2020, Ding 2010), the author could 
not find a literature source where an explicit 
algorithm for computing the above considered 
probabilities is presented. Such an algorithm, 
following the above demonstrated technique, will 
be a topic of the author’s further research. 

The nodes of a generalized BN bear similarity 
to the gates of a fault tree, but a BN node can have 
multiple outputs and its CPTs can be defined by a 
wide variety of functions, while a fault tree gate 
has one output and only a few logical functions 
are used to convert the inputs of a gate to its 
output (e.g. OR, AND, XOR, k-out-of-n). 

Beside generalized BNs, there are also other 
extensions of classical BNs (e.g. dynamic or 
temporal BNs). They are described in Sucar 2001. 
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3. Safety analysis of a biogas production unit 
The main component of a biogas production unit 
is the digester. It is a closed airtight tank where 
the biogas is obtained from biomass in the process 
of anaerobic digestion (fermentation), i.e. 
biomass is decomposed by anaerobic bacteria into 
gas mixture (methane, carbon dioxide and 
hydrogen sulfide) and digestate (liquid and solid 
residue that can be used as a fertilizer). There are 
four basic digester types – covered lagoon, 
complete mix, plug flow and fixed film (see 
Uddin & Wright, 2023). We will analyze here a 
digester of the complete mix type, since such a 
digester is used in a biogas plant whose 
supervising engineer has been consulted in the 
course of the II.PN.05 project, which provided 
support for this research. 

Fig. 2. Diagram of a biogas production unit 
 
A schematic diagram of a biogas production 

system based on a complete mix digester is shown 
in Fig. 2. For lack of space, the heat exchanger 
providing the right temperature for the 
fermentation process, supplied from the 
combined heat and power unit located in the 
upgrading station, is not shown, but its presence 
should be taken into regard. 

Fig. 3 shows the structure of a BN that  
illustrates the dependencies between various 
hazardous events that can occur in or around a 
digester and their damaging or destructive 

consequences. This model may not be complete, 
but it has been designed so that the network 
structure does not need to be changed when the 
model is extended by adding new events and 
links. 

As follows from the character of the specified 
events and their interdependencies, the respective 
variables are binary and their CPTs are defined 
using logical functions. For example, the CPT of 
Y�{Serious injury or fatality} (i.e. Y=1 if the 
event in braces occurs, else Y=0) is defined using 
the function f(a,b,c,d) = (a�b�c)�d, where a, b, c 
and d are binary values of the following variables: 
X1�{External explosion or fire}, 
X2�{Digester explosion}, 
X3�{Digester fire} and 
X4�{Personnel in the vicinity}. 

 
If the CPT of Y is deterministic (see the definition 
in Section 2), then 

 

   (6) 

If all the CPTs are assumed deterministic (a 
simplified model), then for the probabilistic 
analysis of the network we only need probabilities 
of the initial events, i.e. those having no parents. 
A model with stochastic CPTs would require 
learning the respective probabilities from 
statistical data. 
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Fig. 3. Structure of a BN for the biogas production unit  
 
A detailed network analysis should take into 

account that some events have definite duration 
(e.g. digester filling or draining), the duration of 
others is finite but indefinite (e.g. icy outlet pipe, 
valve closed, sensor failure), while others are 
instantaneous (e.g. electric spark or lightning). 

Handling of such events, referred to as 
temporal or time-related, is the subject of 
(Mrowca et al. 2022) – its results can be helpful 
in the analysis of the considered system. In the 
next section it is shown how to define 
probabilities associated with time-related events. 

4. Safety Analysis of the upgrading Station 
The biogas produced in the digester is a mixture 
of methane (CH4), carbon dioxide (CO2), 
hydrogen sulfide (H2S), nitrogen (N2), hydrogen 
(H2) and oxygen (O2). It also contains some 
water vapor (H2O). The first two components 
make up approximately 95% of its composition. 

 
 
 

 
Before being fed into a gas network, biogas 

undergoes a purification process to extract 
methane and remove other components.  
This process takes place in the upgrading station 
whose diagram is shown in Fig. 4. In the first 
processing stage, H2O and H2S (highly corrosive 
agents) are removed (H2O by chilling and H2S in 
the carbon filter). Next, the compressor pumps 
biogas to the upgrading unit whose task is to 
remove CO2 and other gases to obtain 
biomethane, i.e. almost pure CH4. In the 
conditioning unit the biomethane is odorized (for 
safety reasons) and its calorific value is increased 
(e.g. by addition of propane). The injection unit 
increases the gas pressure in order to feed it into 
the gas grid. Gas flare is necessary to burn the 
surplus biogas that cannot be accommodated by 
the grid (lower recipient demand or machinery 
failure). Flame arrester prevents flashbacks that 
can occur as a result of pressure fluctuations in the 
pipework (flame moving upstream may cause 
damage or explosion). For a detailed description 
of the biogas upgrading process see Galloni and 
Di Marcoberardino 2024.  
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Fig. 4. Diagram of the upgrading station  

Fig. 5. Structure of a BN for the upgrading station 
 

The structure of a Bayes network for the 
analysis of safety issues specific to a biogas 
upgrading station is presented in Fig. 5. The 
remarks concerning the CPTs and types of events 
are the same as in the previous section. For 
example, the CPT of Y�{CH4 concentration 
inside station is between LEL-UEL} is defined 
using the function f(a,b,c,d,e,h) 
= (a�b�c)�d�(e�h) where a, b, c, d, e and h are 
binary values of the following variables: 

 

 

 
X1�{Valve leakage}, 
X2�{Compressor leakage}, 
X3�{Pipe coupling leakage}, 
X4�{Ventilation failure}, 
X5�{CH4 detector failure} and 
X6�{Automatic shut-off failure} 

Note that {CH4 concentration below LEL}, 
{CH4 concentration between LEL-UEL} and 
{CH4 concentration above LEL-UEL} are time-
related events, i.e. if a leakage occurs, CH4 
concentration is initially below LEL, then 
between LEL-UEL, and afterwards above UEL. 
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This is indicated by the time axis in the respective 
node. Since the time points at which the explosive 
limits are reached cannot be accurately predicted, 
only the chronological order of the above events 
is presented under the time axis (similarly as in 
SEQ gate in a dynamic fault tree). The time can 
be counted from the beginning of the earlier 
leakage event. The probabilities of the initial 
events should also be time-related and expressed 
as pi(t)=Pr[Xi(t)=1] for the lasting events or as 
pi(s,t)=Pr(event #i occurs in the time interval [s,t]) 
for the instantaneous events (flashback, spark). 
The event numbers are assigned according to the 
adopted numbering scheme. Some events  can be 
merged to a single multiple-stage event with a 
common set of inputs and different sets of outputs 
for each stage (see the event “CH4 concentration 

inside station …” in Fig. 5). Each stage has its 
own CPT defined for selected inputs (not 
necessarily all). Such an event is in fact a random 
point process with a finite state space (state-to-
state transitions occur at random points in time. 

It should be noted that the probabilities of 
initial events and stochastic CPTs are not needed 
for the purely qualitative cause-effect analysis, 
since they are only necessary for the quantitative 
probabilistic one. This is because the qualitative 
analysis only identifies possible causes or effects 
of particular events without computing the 
associated (conditional) probabilities, as 
demonstrated by Eqs. (4)-(5).  

5. Conclusion and Future Work 
In this paper a method of safety analysis of an 
industrial facility, based on the Bayesian network 
paradigm, is proposed. The author introduces the 
concept of a generalized BN, whose selected or 
all CPTs are defined by algebraic formulas. The 
events represented by the nodes of such a network 
can be time-related, which means that the 
associated probabilities and CPTs are time-
dependent, or, in general, they are be multiple-
stage events viewed as random point processes. In 
Section 2 the guidelines for a generalized BN 
analysis, using Eqs. (4)-(5), are formulated. In the 
following sections two example networks are 
presented that illustrate the dependencies between 
various safety-related events occurring in two 
main parts of a biogas plant. 

Safety models based on generalized BNs are 
expected to be more concise than those applying 
fault trees, Petri nets or “classical” BNs with 

extensive CPTs. Also, the quantitative 
probabilistic analysis of such BNs can be 
numerically less complex compared to the above 
mentioned models. The author’s future work will 

include constructing more detailed BN safety 
models of industrial facilities (biogas plants in 
particular) and developing algorithms for their 
cause-effect analysis (both qualitative and 
quantitative). 
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