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This study investigates the physiological effects of AI based Decision Support Systems (DSS) on control room
operators through a comprehensive analysis of multiple physiological indicators. Using data from 41 participants
divided into control and experimental groups, we analyzed heart rate, temperature, electrodermal activity (EDA), and
pupil diameter across three scenarios of increasing complexity. Analysis of Covariance (ANCOVA) was employed
to control for baseline differences, revealing significant reductions in pupil diameter (p = 0.0029) for the DSS group,
indicating lower cognitive load. While other physiological measures showed consistent trends suggesting reduced
stress with DSS use, these differences were not statistically significant. The findings provide empirical evidence for
DSS’s positive impact on operator cognitive load, particularly during complex scenarios, while highlighting the need
for comprehensive physiological monitoring in assessing human-system interaction.
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1. Introduction

The implementation of Decision Support Systems
(DSS) in control room operations represents a
critical advancement in industrial safety and ef-
ficiency. While the operational benefits of DSS
have been well-documented, a comprehensive un-
derstanding of their physiological impact on op-
erators is essential. Such an understanding is cru-
cial for optimizing human-system interaction, en-
suring that technological support enhances rather
than hinders operator performance.

Previous research has primarily focused on per-
formance metrics and subjective assessments of
DSS effectiveness. However, physiological mea-

surements provide objective insights into opera-
tors’ cognitive and emotional states during task
performance. Studies have employed individual
physiological measurements to assess operators’
responses to DSS, such as eye tracking to iden-
tify periods of high cognitive load and potential
operator errors (Ikuma et al., 2014), and heart
rate monitoring to observe the effects of new DSS
implementations on operator stress (Fallahi et al.,
2016).

This study extends existing research by com-
bining multiple physiological measures to provide
a more complete picture of the impact of DSS on
control room operators. By integrating these mea-
sures, we aim to offer a more nuanced understand-
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ing of how DSS influences operators’ cognitive
workload, stress, and overall performance.

This paper presents experimental results focus-
ing on the physiological data collected during
DSS use or not in control room environments.
The development of the DSS is detailed in Mi-
etkiewicz et al. (2024), while the full experimental
design is described in Amazu et al. (2024) and
data in Amazu et al. (2024).

2. Methods

2.1. Experimental Design and Objectives

This study employed a controlled experimental
design to evaluate the physiological impact of
DSS on control room operators. The primary ob-
jective was to quantify changes in operator cog-
nitive load and stress levels through comprehen-
sive physiological monitoring while performing
complex control room tasks. The experimental
design incorporated three scenarios of increasing
complexity, allowing for systematic assessment
of DSS effectiveness across varying operational
demands.

2.2. Simulation Environment

The experimental platform utilized a high-fidelity
simulation of a formaldehyde production plant
Demichela et al. (2017) use to create an oper-
ational control room environment, developed in
collaboration with industry experts to ensure op-
erational realism. The main interface of the simu-
lator can be seen in fig. 1.

The simulation encompassed a comprehensive
process flow including the Tank Section with
methanol storage and alarm systems, which fed
into the Methanol Section for liquid-to-gas con-
version. The Compressor Section mixed com-
pressed gas with vaporized methanol, heating the
mixture to 200°C in a heat exchanger (REC2).
The central Reactor Section contained the primary
reaction vessel, surrounded by a Heat Exchanger
network (REC1, REC2, REC3) managing thermal
conditions. REC1 and REC3 provided product
cooling through heat recovery systems, while the
Absorber Section employed a countercurrent flow
design for precise product absorption.

This comprehensive simulation environment
provided a realistic platform for evaluating oper-
ator performance under varying conditions while
maintaining experimental control and repeatabil-
ity.

2.3. Participant Characteristics and
Group Assignment

The study involved 41 participants (mean age =
25 years, SD = 5.4), primarily comprising chem-
ical engineering master’s students with founda-
tional knowledge of process control principles.
The Control Group (G1, n=20) operated the simu-
lator without DSS support and the experimental
Group (G2, n=21) utilized the integrated DSS
throughout operations. Prior to experimental tri-
als, all participants underwent standardized train-
ing to ensure baseline competency with the simu-
lator interface and basic operational procedures.
The study protocol was approved by both the
Technological University Ethics Review Commit-
tee (Ref: REC-20-52A), with informed consent
obtained from all participants.

2.4. Experimental Scenarios

Three distinct scenarios were developed to eval-
uate operator performance across a spectrum of
operational complexity:

(1) Pressure Indicator Control Failure: Auto-
matic pressure management system malfunc-
tion requires manual nitrogen inflow adjust-
ment, causing pressure drop due to continuous
pump operation.

(2) Nitrogen Valve Primary Source Failure:

Primary nitrogen source failure necessitates
backup system activation, demanding also op-
erator intervention to control pump power and
mitigate pressure decline.

(3) Temperature Indicator Control Failure:

Control room operator faces challenges man-
aging reactor temperature after cooling sys-
tem malfunction, requiring coordination with
field personnel to prevent overheating and en-
sure safe operational parameters.
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Fig. 1.: Process Flow Diagram of Production: Formaldehyde is synthesized by mixing methanol with
compressed air, and then heating the mixture. This initiates a chemical reaction in the Reactor, followed
by dilution in the Absorber to achieve the desired concentration. At the bottom, there are various mimics
that the operator can display on another screen for a detailed process flow diagram of specific plant
sections. First published in Lecture Notes in Computer Science vol 14294, pp 15–26 by Springer Nature

Fig. 2.: Support Panel Layout: In the upper left quadrant, the alarm list alerts the operator to current
issues. The upper right quadrant houses the traditional procedure system. The lower left quadrant features
a critical graph displaying production metrics. In the lower right quadrant, the DDS quadrant provides
situation-specific recommendations to the operator, this quadrant is present or not depending of the
experimental group. First published in Lecture Notes in Computer Science vol 14294, pp 15–26 by
Springer Nature
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Table 1.: ANCOVA Table for Pulse Rate

Source SS df F p
Group 56.63 1.0 2.13 0.148
Scenario 213.66 2.0 4.03 0.021
G×S 9.44 2.0 0.18 0.837
Baseline 17304.30 1.0 652.28 ≥ 0.001
Residual 2281.49 86.0
SS: Sum of Squares, df: Degrees of Freedom, F: F-statistic
, p: p-value

The statistical check of the use of the ANCOVA
mode can be seen in fig. 4. The linearity check
plot shows a strong positive linear relationship
between the observed and predicted pulse rate
values, confirming that the linearity assumption
is met. The independence of residuals plot dis-
plays residuals scattered randomly around zero,
without any discernible pattern, indicating that the
assumption of independence is satisfied. Lastly,
the normality plot (Q-Q plot) shows the residuals
closely following the diagonal line, suggesting
that the normality assumption is also met. These
plots collectively demonstrate that the data is suit-
able for ANCOVA analysis.

The adjusted means for pulse rate show that G2
consistently has lower pulse rates compared to G1
across all scenarios:

• Scenario 1 (S1): G1 = 82.67, G2 = 74.17
• Scenario 2 (S2): G1 = 79.65, G2 = 72.22
• Scenario 3 (S3): G1 = 80.52, G2 = 71.51

The results of the Levene’s test are as follows:

• S1: Stat = 5.115, p = 0.031
• S2: Stat = 3.787, p = 0.061
• S3: Stat = 6.799, p = 0.014

Levene’s test for equal variances reveals that
the assumption of homogeneity of variances is
violated for Scenarios 1 and 3 (p ≤ 0.05), but
holds for Scenario 2 (p = 0.061). To account for
heteroscedasticity, the ANCOVA was conducted
with robust standard errors (HC3). The results
suggest that the DSS may have a positive impact
on reducing control room operators’ pulse rates,
as evidenced by the consistently lower adjusted
means for G2 compared to G1 across all scenarios.
However, the group effect was not statistically

significant, possibly due to the limited sample
size or variability within groups. The significant
scenario effect indicates that the complexity of
the scenario influences pulse rates, with higher
complexity leading to increased pulse rates. The
lack of a significant interaction between group and
scenario suggests that the DSS’s effect on pulse
rate is not dependent on the scenario complexity.

3.2. Temperature

The ANCOVA results for temperature across the
three scenarios are summarized in Table 2. The
statistical check of the ANCOVA for the Temper-
ature can be seen in fig. 5. The model adjusts for
baseline differences and examines the main effects
of group and scenario, as well as their interaction
effect on temperature. The table below presents
the sum of squares, degrees of freedom, F-value,
and p-value for each effect in the model.

Table 2.: ANCOVA Table for Temperature

Source SS df F p
Group 0.049 1.0 0.229 0.633
Scenario 4.179 2.0 9.811 ≥ 0.001
G×S 0.022 2.0 0.051 0.950
Baseline 172.81 1.0 811.46 ≥ 0.001
Residual 18.314 86.0
SS: Sum of Squares, df: Degrees of Freedom, F: F-statistic
, p: p-value

The statistical check plots fig. 5 confirm that the
ANCOVA assumptions of linearity, independence
of residuals, and normality are satisfied, validating
the use of this analysis for the temperature data.

The results indicate that the main effect of the
group (C(Group)) on temperature was not statisti-
cally significant (F(1, 86) = 0.229, p = 0.633). This
suggests that there was no significant difference in
adjusted temperature between the groups that used
the DSS and those that did not, when averaging
across all scenarios. However, the main effect of
the scenario (C(Scenario)) was significant (F(2,
86) = 9.811, p ≤ 0.001). This indicates that the
temperature varied significantly across the dif-
ferent scenarios. The interaction effect between
group and scenario (C(Group):C(Scenario)) was
not significant (F(2, 86) = 0.051, p = 0.950), sug-
gesting that the effect of the group on temperature
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Fig. 4.: Statistical checks for Pulse Rate: Linearity, Independence of Residuals, and Normality.

Fig. 5.: Statistical checks for Temperature: Linearity, Independence of Residuals, and Normality.

did not differ significantly across the scenarios.
The adjusted means for temperature across the
scenarios are presented below:

• S1: G1 = 31.28°C, G2 = 32.08°C
• S2: G1 = 31.68°C, G2 = 32.48°C
• S3: G1 = 31.89°C, G2 = 32.62°C

The adjusted means show that, in all scenar-
ios, Group G2 (which used the DSS) had slightly
higher temperatures than Group G1. This differ-
ence, although consistent, was not statistically sig-
nificant as indicated by the non-significant main
effect of the group. Levene’s test for equal vari-
ances indicates that the assumption of homogene-
ity of variances is met for all scenarios (p ≥ 0.05),
supporting the validity of the ANCOVA results:

• S1: Stat = 0.042, p = 0.838
• S2: Stat = 0.044, p = 0.836
• S3: Stat = 0.027, p = 0.871

These p-values indicate that the assumption of
equal variances was met for temperature across

all scenarios, supporting the validity of the AN-
COVA results. In summary, the ANCOVA analy-
sis for temperature revealed significant differences
across scenarios but not between the groups or
their interaction. The consistent trend of higher
temperatures in Group G2, although not statisti-
cally significant, suggests potential physiological
differences associated with the use of the DSS,
warranting further investigation in future studies.

3.3. EDA

The EDA doesn’t pass the statistical check for
ANCOVA. We simply take the mean of the EDA
for participants during each scenario and divide
it by the mean value of EDA during the breaks.
In this way, we normalize the value and we can
compare them without baseline effect. The Mann-
Whitney U test is used due to the non-normality
of the data as shown by the Shapiro test. There are
no statistical differences between the two groups.

In scenarios 1 and 3 we can observe a lower
EDA for group 2 at the opposite of scenario 2
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Table 3.: EDA Statistical Test Results

Scenario Test p SW1 SW2 Levene
S1 WRS 0.288 2.1e-6 0.099 0.34
S2 WRS 0.468 9.3e-6 0.650 0.13
S3 WRS 0.375 0.980 3.8e-5 0.46
WRS: Wilcoxon Rank-Sum test
SW1, SW2: Shapiro-Wilk test p-values

where group 2 has a higher EDA.

• S1: G1 = 1.4, G2 = 0.85
• S2: G1 = 1.4, G2 = 1.0
• S3: G1 = 1.1, G2 = 1.35

Although the differences in normalized EDA
between the groups were not statistically signifi-
cant, the observed patterns suggest that the DSS
may have a subtle influence on operators’ emo-
tional arousal during the scenarios. The lower ad-
justed EDA for G2 in Scenarios 1 and 2 could indi-
cate that the DSS helps reduce emotional arousal
or stress in these situations. However, the higher
adjusted EDA for G2 in Scenario 3 suggests that
the DSS might not have the same effect in more
complex scenarios. The lack of statistical signifi-
cance could be attributed to several factors, such
as the limited sample size, individual variability
in EDA responses, or the need for more sensitive
measures of emotional arousal.

3.4. Pupil Diameter

The pupil diameter was assessed at two different
times during the experiment. The first time period,
referred to as the Baseline Overview, occurred
from the start of the experiment until the onset
of the first critical alarm. The second time pe-
riod, known as the Critical Alarm, began with
the start of the first critical alarm and continued
until the alarm had ended. The ANCOVA results
for pupil diameter across the three scenarios are
summarized in Table 4. The statistical check of
the ANCOVA for the Pupil Diameter can be seen
in fig. 5. The ANCOVA results (table 4) reveal a
statistically significant main effect of Group (p =
0.0029) on pupil diameter, indicating a significant
difference between G1 and G2, independent of the
scenario and baseline measurements. The main
effect of Scenario (p = 0.768) and the interaction

between Group and Scenario (p = 0.849) were not
statistically significant, suggesting that the differ-
ences in pupil diameter between the groups were
consistent across scenarios.

Table 4.: ANCOVA Table for Pupil Diameter

Source SS df F p
Group 0.221 1.0 9.411 0.003

Scenario 0.012 2.0 0.264 0.768
G×S 0.008 2.0 0.164 0.849
Baseline 4.972 1.0 211.89 ≥0.001

Residual 1.971 84.0
SS: Sum of Squares, df: Degrees of Freedom, F: F-statistic
, p: p-value

The adjusted means for pupil diameter for each
scenario and each group are shown below:

• S1: G1 = 3.626, G2 = 3.299
• S2: G1 = 3.498, G2 = 3.311
• S3: G1 = 3.618, G2 = 3.314

The significantly lower adjusted pupil diameter
for G2 compared to G1 suggests that the DSS
may help reduce cognitive workload and emo-
tional arousal during critical alarm phases. This
finding aligns with the expectation that the DSS
would be most beneficial in supporting operators
during complex, high-stress situations. The lack of
significant effects for Scenario and the interaction
between Group and Scenario indicates that the im-
pact of the DSS on pupil diameter was consistent
across the different levels of scenario complexity.
This consistency suggests that the DSS may be
effective in reducing cognitive workload and emo-
tional arousal regardless of the specific scenario
encountered by the operators.

4. Discussion

The significant reduction in pupil diameter among
DSS users provides strong evidence for decreased
cognitive load when using decision support tools.
This finding aligns with previous research sug-
gesting that well-designed technological support
can reduce mental workload in complex oper-
ational environments. The consistent but non-
significant trends in heart rate and EDA indicate
potential stress reduction benefits that warrant fur-
ther investigation. The lack of statistical signif-
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Fig. 6.: Statistical checks for Pupil Diameter: Linearity, Independence of Residuals, and Normality.

icance in these measures might be attributed to
individual variability and the limited sample size.

5. Conclusion

This study provides empirical evidence that DSS
implementation positively affects operator cogni-
tive load, particularly as measured through pupil
diameter. The findings support the implementa-
tion of DSS in control room environments while
highlighting the need for comprehensive physi-
ological monitoring in assessing human-system
interaction. Future research should focus on larger
sample sizes and longer-term physiological effects
of DSS use.
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