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Critical infrastructure networks, such as railway networks, provide essential services whose continuity must be
secured. Towards this end, we combine multi-criteria portfolio decision analysis with Probabilistic Risk Assessment
(PRA) to construct portfolios of reinforcement actions that contribute cost-efficiently to the attainment of objectives
that represent the network’s services. Our model admits a range of assumptions about the relative importance of
these objectives through incomplete information about the weights associated with the corresponding criteria. It also
helps identify which portfolios of reinforcement actions perform best with regard to these objectives at different
budget levels. We illustrate our model with a study on the reinforcement of switches at a railway station, which
connects several origin-destination pairs with different volumes of planned traffic. If one or more switches are
disrupted, some connections may be lost, and the corresponding traffic volume will be affected. We formulate an
additive multi-criteria utility function such that the weight of each criterion reflects the planned traffic volume for
the corresponding connection. PRA algorithms are used to assess the reliability of these connections. The results
help identify the switches where the reinforcement actions should be implemented when the aim is to maximize the
station’s performance, as measured by the expected enabled traffic volume between the origin-destination pairs.

Keywords: Probabilistic risk assessment, Multi-criteria decision analysis, Portfolio decision analysis, Infrastructure
networks, Transportation systems.

1. Introduction

In general, critical infrastructures comprise all
the assets, systems, and networks that provide
essential functions to society. They are central,
for example, in the energy, water supply, trans-
portation, and telecommunications sectors. Be-
cause disruptions in these infrastructures can sig-
nificantly erode public health, safety, security, and

economic well-being, they must function ade-
quately to achieve sustainability goals and social
development (Yusta et al., 2011).

Europe’s railway networks spanned 202,000
km in 2022, with notable growth in high-speed
rail. Disruptions in these networks can undermine
performance objectives, such as ensuring con-
nectivity between strategic locations or providing
reliable transportation for passengers and goods.

1926



1927Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

Such disruptions can be due to failures caused by
the usual wear of technical systems or by vul-
nerabilities to external hazards, including extreme
weather conditions and even intentional attacks.
Consequently, there is a need to understand what
kinds of disruption can affect the network, what
impacts these disruptions can cause, and what ac-
tions effectively mitigate them, subject to the con-
straint that there are limited resources for choos-
ing and implementing these actions. It is pertinent
to analyze portfolios of these actions, as many
are typically implemented jointly. These analy-
ses support allocating resources to cost-efficient
portfolios of reinforcement actions to ensure that
the network performs effectively relative to their
implementation costs (Kangaspunta et al., 2012).

In this paper, we present a multi-criteria port-
folio decision analysis approach to (i) assess and
aggregate several objectives of infrastructure net-
work performance, measured by corresponding
criteria, and (ii) guide the cost-efficient allocation
of resources to reinforcement actions that mitigate
disruptions. We model the network as nodes (com-
ponents subject to failure) and edges (connections
between components) to identify the nodes (or
combinations of nodes) that are most important to
network performance.

The remainder of this paper is organized as
follows. Section 2 reviews previous approaches to
analyzing disruptions and their impacts on infras-
tructure network performance, focusing on trans-
portation systems. Section 3 develops a multi-
criteria portfolio decision analysis approach to
quantify the performance objectives of infrastruc-
ture networks and to guide the allocation of re-
sources to reinforcement actions to fortify them.
Section 4 presents a case study on fortifying
switches to improve the reliability of connections
at a railway station in Finland. Section 5 discusses
the numerical results and outlines directions for
future work. Section 6 concludes and outlines
potential areas for future research.

2. Background

Early studies on railway networks examined
mainly their topological configuration due to data
and computational limitations (Erath et al., 2008).

Recently, there has been a proliferation of specific
models to reduce travel times (Wang et al., 2023),
plan new lines (Zhao et al., 2021), and secure
track functionality, among others. In many coun-
tries, different entities make infrastructure deci-
sions (e.g., ensuring the railway network is safe
and functional) and operational decisions (e.g.,
ensuring that train timetables are maintained).
Therefore, infrastructure and operational research
efforts have historically been decoupled. In this
setting, we focus primarily on the infrastructural
analysis of railway networks.

Most railway network analysis draws on net-
work theory to identify critical components, eval-
uate network performance, and develop strategies
to reinforce them (see e.g., Pirbhulal et al., 2021).
Latora and Marchiori (2005) present a method
to identify critical components in networks rep-
resented by nodes and edges. They show how
adding edges can improve network performance,
measured through topological metrics, i.e., a met-
ric that relies purely on how nodes are positioned
and connected in the network. Ip and Wang (2011)
propose a methodology to assess and improve the
resilience of railway networks using topological
metrics, such as the number of independent paths.

Although several studies use topological met-
rics to assess network performance, few evaluate
the quality of these assessments (Haritha and An-
janeyulu, 2024). A key limitation is that topolog-
ical metrics are not necessarily related to the net-
work’s performance objectives. For example, Hao
et al. (2023) propose a multiobjective optimiza-
tion approach to identify critical components in a
network, finding that a node’s criticality does not
often correlate with its topological importance.
Similarly, LaRocca et al. (2015) note that topolog-
ical metrics are limited in assessing the robustness
of a power system across scenarios. Alderson et al.
(2013) demonstrate that the criticality of a node
depends on which other nodes are disrupted.

In evaluating network performance, identifying
relevant hazards and their impacts is often chal-
lenging. Sometimes, it is unclear what hazards can
affect the network or to what extent the network
will continue to perform satisfactorily if some
occur (Zio, 2016). Zhang et al. (2024) summarize
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recent studies on quantifying loss of railway func-
tionality due to various hazards.

Several authors proceed by elaborating scenar-
ios and estimating their probabilities. For exam-
ple, Joshi et al. (2024) and Yang et al. (2024)
consider scenarios of rainfall and tornadoes to
assess the risks on railway systems in India and
China, respectively. Turoff et al. (2016) propose
a collaborative, dynamic scenario model based on
expert judgments to estimate the cascading effects
of infrastructure interactions.

Zio (2016) and Sedghi et al. (2021) call for
the development of frameworks that help railway
infrastructure managers understand and quantify
the complexity of rail networks so that these net-
works can be better prepared for hazards, thereby
ensuring acceptable performance. In this setting,
we develop an approach to assess the importance
of rail switches and allocate resources to reinforce
them in view of multiple objectives that represent
the services provided by the network.

3. Proposed Approach for Reinforcing
Networks

3.1. Network Representation

Let G(V ;E) denote a network consisting of a set
of nodes V = {1, . . . ,m} and a set of undirected
edges E ⊆ {(i, i′) | i, i′ ∈ V } between the
nodes. A path is a sequence of nodes and edges
that connect two nodes. The state of each node
is either operational or disrupted. If a node is
disrupted, none of the paths containing it can be
traversed. Thus, using D ⊆ V to denote the set of
disrupted nodes, the remaining network after such
a disruption is G(V D;ED), where V D = V \D
and ED = {(i, i′) ∈ E | i, i′ ∈ V D} ⊆ E.

The state xk of a node k is modeled as a
realization of a binary random variable Xk with
xk = 0 if node k ∈ V is disrupted and xk = 1

if it is operational. The state of the network is a
realization x = (x1, . . . , xm) ∈ X = {0, 1}m of
the random variables that represent the states of m
nodes. We assume that the disruption events at the
nodes occur independently so that pk = P[Xk =

0] is the probability that node k is disrupted. Due
to the independence assumption, the probability
distribution over the states of the network is char-

acterized by the vector p = (p1, . . . , pm).

3.2. Assessing Network Performance

When an infrastructure network enables multi-
ple services, its performance in providing such
services must be measured considering several
objectives. These objectives can be quantified by
introducing a corresponding quantifiable criterion
for each. Some examples of these objectives are
maximizing the probability of having a connec-
tion between a given pair of nodes or minimizing
the network’s restoration time after a significant
incident. In what follows, assuming that there are
n objectives, we employ the expected utility func-
tion so that the performance on the criterion j is
given by the normalized utility score uj(x), j =

1, . . . , n when the network is in state x ∈ X .
The utility functions uj(·) can be aggregated

by employing the additive multi-criteria utility
function (1) on condition that the criteria are mu-
tually preferentially independent (i.e., preferences
for a given criterion do not depend on those for
any other criteria), and every criterion is additive
independent (i.e., there are no preferences for how
the realizations for a given criterion coincide with
realizations with other criteria, provided that the
probabilities of all realizations on the different
criteria remain unchanged) (see Dyer and Sarin,
1979). Specifically, in the utility function

u(x,w) =

n∑
j=1

wjuj(x) ∈ [0, 1], (1)

the weight of the criterion wj ∈ [0, 1], j =

1, . . . , n reflects the relative overall utility in-
crease gained as a result of the performance im-
provement on the j-th criterion when the state of
the network changes from its worst state (all nodes
are disrupted) to its best state (all nodes are op-
erational). Following the usual convention, these
weights can be normalized so that

∑n
j=1 = 1.

Because it can be challenging to specify criteria
weights by eliciting point estimates, we character-
ize these weights with an information set S (Salo
and Hämäläinen, 1992). The information set is a
subset of all possible weights

S = {w ∈ Rn | Aw ≤ B} ⊆ (2)
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{
w ∈ Rn | wj ≥ 0 ∀j,

n∑
j=1

wj = 1
}
= S0,

where the constraint matrices A ∈ Rt×n and B ∈
Rt contain the coefficients implied by t preference
statements concerning the relative importance of
objectives. For example, if criterion 1 is at least as
important but no more than twice as important as
criterion 2, then the two constraints w1 ≥ w2 and
w1 ≤ 2w2 apply.

3.3. Network Fortification

The network can be strengthened through rein-
forcement actions. The expected performance of
the network depends on which portfolio of actions
is implemented. We assume that there is a single
reinforcement action per node so that qk = 1 if
action k is implemented (i.e., node k is reinforced)
and qk = 0 if not. If the action is implemented at
node k, its disruption probability is reduced from
pk to p′k with p′k < pk.

The portfolio of reinforcement actions is given
by vector q = (q1, . . . , qm) ∈ Q = {0, 1}m.
A portfolio is feasible if its cost is within the
available budget b (that is, c(q) ≤ b) and satisfies
relevant logical constraints (for example, if ac-
tions 1 and 2 are mutually exclusive, the constraint
q1 + q2 ≤ 1 holds). The set of feasible portfolios
is denoted by QF ⊆ Q.

3.4. Non-Dominated and Cost-Efficient
Portfolios

When maximizing the expected network perfor-
mance, the objective is to determine which fea-
sible portfolios outperform others for all feasible
weights. For further insights, such analyses can
be produced at different cost levels comparing
portfolios based on the concept of dominance.

Definition 3.1. Portfolio q1 ∈ QF is domi-
nated by portfolio q2 ∈ QF in the informa-

tion set S , denoted by q2
S� q1, if and only if

E
[
u(x,w) | q1] ≤ E

[
u(x,w) | q2] for all w ∈ S

and (ii) E
[
u(x,w) | q1] < E

[
u(x,w) | q2] for

some w ∈ S .

If E
[
u(x,w) | q1] = E

[
u(x,w) | q2] ∀w ∈ S ,

the expected performance of portfolios q1 and q2

is the same, denoted by q1
S∼ q2.

Definition 3.2. The portfolio q1 ∈ QF is cost-
efficient with respect to another portfolio q2 ∈ QF

in the information set S , denoted by q1
S�C q2,

if and only if (i) q1
S� q2, c(q1) ≤ c(q2) or (ii)

q1
S∼ q2 and c(q1) < c(q2).

Definition 3.3. Portfolio q1 ∈ QF is cost-
efficient for the information set S , denoted by
q1 ∈ QCE if and only if �q2 ∈ QF such that

q2
S�C q1.

The set of cost-efficient portfolios can be de-
termined by first computing the utility function at
the extreme points of the information set (Liesiö
and Salo, 2012) and then using algorithms such
as Norm-methods Koski and Silvennoinen (1987)
or SAUGMECON Zhang and Reimann (2014) to
compute Pareto-optimal solutions.

4. Case Study

The Siilinjärvi train station, depicted in Figure
1, provides connections between its three neigh-
boring stations and beyond in northern Savonia,
Finland. We represent the station as a network,
where 22 nodes represent the rail switches (the
mechanical devices that allow trains to move from
one track to another), and edges represent the
rail segments between them. Terminal nodes A,
B, and C represent the station boundaries from
which there are track connections to neighbor-
ing stations. Hence, Siilinjärvi has three bidirec-
tional connections: (A,B), (B,C), and (A,C). The
connections between terminal nodes are available
only if enough switches at the station are opera-
tional. Hence, not all switches have to be opera-
tional for a given connection, as the connection
may be available if some switches are disrupted.

The reliability of switches can be improved
through reinforcement actions carried out as part
of preventive maintenance. In general, the failure
probabilities of switches can be estimated from
historical data or simulation models. Still, for this
illustrative case, we assume that, before reinforce-
ment, the failure probability of each switch is



1930 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

pk = 0.01, which is reduced to p
′
k = 0.005 as a

result of reinforcement. All actions have the same
cost; thus, the budget spent equals the number
of reinforced switches. We study the expected
performance of the network as a function of this
budget. In particular, we provide guidance for se-
lecting reinforcement actions based on incomplete
information about the relative importance of the
connections.
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Fig. 1. Representation of the Siilinjärvi station.

4.1. Network Performance

The network’s performance is evaluated based on
the analysis of operational paths for the three
origin-destination pairs and, specifically, the re-
liability of connections (A,B), (B,C), and (A,C).
The connection (X,Y) is operational if at least
one operational path exists between X and Y (that
is, no switch along this path is disrupted). The
reliability of a connection is consequently equal to
the probability that at least one such path exists.
In this setting, the performance of the network
relative to the connection j can thus be assessed
by employing the utility function (3)

uj(x) =

{
1, if connection j is operational for state x,

0, if connection j is disrupted for state x.

(3)

The expected utility (3) for connection j is
E[uj(x)] = 1 · P[uj(x) = 1] + 0 · P[uj(x) = 0]

is the reliability of this connection. The utility
function (3) can be evaluated by checking whether
there is a path for connection j for each network
state. However, when the m nodes have binary
states, the number of states of the network is 2m,
which can be large. To address challenges arising

from the exponential growth of this problem and
to support the use of (3) to larger networks, we use
the minimum cut upper bound approximation to
compute reliabilities for connections (Jung, 2015).

4.2. Preferences Regarding Connections

The relative importance of a connection is as-
sessed based on its annual traffic volume. Since
these volumes vary somewhat, we consider two
situations. In the first, there is no information
about traffic volumes. In this case, preferences
about connections are represented by the set S0 ={
w ∈ R3 | wj ≥ 0 ∀j,∑3

j=1 wj = 1
}

. In other
words, any one of the connections can be deemed
as the one which is of overriding importance and
the sole focus of reinforcement actions.

In the second, drawing upon available data
about traffic volumes, the connections are ranked
based on the traffic volumes such that the vol-
ume for the two first connections is at least five
times greater than that of the third: (A,B) - 500
trains/year, (A,C) - 500 trains/year, and (B,C) -
100 trains/year. This is represented by the set
S1 =

{
w ∈ R3 | wj ≥ 0 ∀j, ∑3

j=1 wj =

1, w2 ≥ 5w1, w3 ≥ 5w1

}
.

4.3. Results
4.3.1. Cost-Efficient Portfolios

The number of feasible and cost-efficient portfo-
lios for both situations is in Table 1. The number
of cost-efficient portfolios is much smaller when
there is information about the relative importance
of connections. These results highlight how this
information makes it easier to produce more con-
clusive recommendations. Without such informa-
tion, recommendations could be derived based on
decision rules, such as choosing the cost-efficient
portfolio to maximize the minimum of reliabilities
across connections.

4.3.2. Switches to Reinforce

If there is a single cost-efficient portfolio, then
the recommended reinforcement actions are the
ones that it contains. However, in some cases,
there may be many cost-efficient portfolios based
on available preference information regarding the
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Table 1. Number of feasible and cost-efficient port-
folios for the two information sets and size of action
portfolios.

Budget 1 5 10 15 20

| QF | 23 35.4k 1.7M 4M 4.2M
S0 5 163 972 1.7k 1.9k
S1 2 51 434 673 738

importance of connections. In such cases, rec-
ommendations for choosing reinforcement actions
can be based on their core index. This metric,
proposed by Liesiö et al. (2007), is the relative
share of those non-dominated portfolios in which
a given action is contained. By definition, all cost-
efficient portfolios are non-dominated. We denote
by QND(c) the set of non-dominated portfolios
of cost c. The core index of an action qk when the
budget is c is given by (4).

CI(qk, c) =
|{q ∈ QND(c) | qk ∈ q}|

|QND(c)| (4)

If the core index is 1, the action is a core action;
if the core index is 0, an exterior action, and
a borderline action otherwise. Core actions can
be recommended because they are in every cost-
efficient portfolio. Exterior actions can be dis-
carded because they are not in any cost-efficient
portfolio. Eliciting additional information about
the relative importance of connections typically
reduces the number of cost-efficient portfolios and
the number of borderline actions.

The core indices of the reinforcement actions
for the two information sets and budgets (defined
as the size of feasible action portfolios) are in
Figure 2. When only a few actions can be imple-
mented, there are no core actions because actions
at different switches improve the reliability of
paths for different connections, and it is not pos-
sible to improve all connections simultaneously.
When more information about the importance of
these connections is provided, as represented by
the change from the information set S0 to S1, the
number of borderline actions decreases as some
become exterior or core actions.

Topological metrics such as degree or between-
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Fig. 2. Core index for reinforcement actions for dif-
ferent information sets and size of action portfolios.
Red: exterior action, grey: borderline action, blue: core
action.

ness are usually used to quantify the relevance
of nodes in a network. For example, Ghorbani-
Renani et al. (2021) identify candidate nodes to
be reinforced in interdependent networks based
on five centrality metrics. Yet, a concern with
relying solely on centrality metrics is that they are
not necessarily linked to network performance.
In contrast, the priorities for the reinforcement
actions at the nodes that represent switches de-
pend explicitly on how these actions improve the
reliability of connections and how important these
connections are. For example, switch 10–which
has a high ranking according to some centrality
metrics (closeness 2nd, degree 3rd, and between-
ness 6th)–should only be reinforced if the budget
allows for the reinforcement of many switches.

4.3.3. Station Performance

The reliabilities of the connections for all cost-
efficient portfolios containing five reinforced
switches are in Figure 3. Given that the traffic
volume of connection (B,C) is at least five times
smaller than that of connections (A,B) and (A,C),
the reinforcement actions are focused primarily on
the connections that involve terminal node A.

Because the set of cost-efficient portfolios for
the weight set S0 contains those that lead to the
greatest reliability improvements on any given
connection, these portfolios can be scrutinized to
gain insights from the perspective of reliability
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Fig. 3. Reliability of the connections for different
cost-efficient portfolios and information sets. Budget:
five switches.

analysis. For example, if only five actions can
be implemented, then the maximum reliability of
the connection (B,C) obtained by implementing
reinforcement actions is around 0.965.

5. Discussion

Our model assumes that the disruption events at
nodes occur independently of each other. In some
situations, there may be dependencies such that
the probability of disruption of one node depends
on the disruptions at other nodes. This would be
the case, for example, if the failure of a given node
increases the load on another to the extent that
the disruption probability of the latter becomes
higher. Such interdependencies can be analyzed
using Bayesian analysis (see e.g., Langseth and
Portinale, 2007), even if such analyses call for a
much higher number of parameter estimates about
conditional probabilities. To alleviate the difficul-
ties of working with such estimates, incomplete
probability information could be admitted, for ex-
ample, by asking experts to express statements
on verbal scales and mapping such statements
to interval-valued probabilities (see, e.g., Toppila
and Salo, 2013).

One could extend the proposed approach by
building scenarios to characterize external con-
ditions affecting the network’s performance. For
example, if node disruption probabilities depend
on the weather, specifying scenarios representing
various weather conditions can be instructive in
permitting the identification of portfolios that per-
form well across all scenarios or at least some of

them (see, e.g., Liesiö and Salo (2012)).
The use of binary variables in the modeling

of disruptions assumes that nodes are operational
or disrupted. This assumption could be relaxed
by introducing multi-state variables to capture re-
strictions arising from partial (but not complete)
loss of node performance.

6. Conclusion

In this paper, we have developed a model that
combines multi-criteria portfolio decision analy-
sis with probabilistic risk assessment to guide the
selection of cost-efficient combinations for rein-
forcement actions in infrastructure networks that
may be disrupted due to natural hazards, technical
failures, or intentional attacks. In contrast to pre-
viously proposed measures, such as topological
centrality metrics, our model accounts for multi-
ple objectives representing the network’s services
and admits incomplete information about the rel-
ative importance of the criteria attached to these
objectives. The computational results also convey
useful information about the budget levels (mea-
sured by the size of the feasible action portfolios)
for which specific reinforcement actions should be
carried out.

Our research also opens avenues for further
methodological and applied work on analyzing
critical infrastructures and selecting reinforce-
ment actions. For example, although we have fo-
cused on a single network, the simultaneous con-
sideration of multiple interdependent networks,
such as energy, transportation, or communication
systems, calls for further methodological exten-
sions.
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(Väylävirasto).

References
Alderson, D. L., G. G. Brown, W. M. Carlyle, and

L. A. T. Cox (2013). Sometimes there is no ”most-
vital” arc: Assessing and improving the operational
resilience of systems. Military Operations Re-
search 18(1), 21–37.



1933Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

Dyer, J. and R. Sarin (1979). Measurable multiattribute
value functions. Operations Research 27(4), 810–
822.
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