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This paper proposes a new inverse Gaussian process with bathtub-shaped degradation rate function, which can 
account for the joint presence of random effect and measurement error. The distinguishing feature of the proposed 
model is its ability to describe degradation processes that present a change point, here intended as the point where 
the bathtub-shaped degradation rate function passes from the decreasing to the increasing phase. Maximum 
likelihood estimates of the parameters of the model are computed by adopting in a combined manner an 
expectation-maximization algorithm and a particle filter method. The same particle filter is also used to estimate the 
mean remaining useful life and to detect the change point. The model is applied to a set of real degradation data of 
five MOSFETs. Obtained results demonstrate the utility and the affordability of the proposed approach. 
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1. Introduction 
The inverse Gaussian process, Wang (2010), has 
proven to be suited to describe the degradation 
process of many technological units. Most of the 
inverse Gaussian processes adopted in the 
literature have a monotonic (either increasing or 
decreasing) degradation rate function, here 
intended as the derivative of the mean function. 
However, the degradation data of some real-world 
units, such as the MOSFETs data displayed in 
Figure 1, exhibit a bathtub-shaped behavior of the 
degradation rate, with a first phase where the 
degradation increases with a decreasing rapidity, 
a second one where it increases with an almost 
constant rapidity, and a final phase where it 
increases with increasing rapidity. Classical 
inverse Gaussian processes adopted in the 
literature are not able to describe this behavior.  
Thus, to overcome this limitation, aiming to fit the 

MOSFETs data, in this paper we propose a new 
perturbed inverse Gaussian process with 
bathtub-shaped degradation rate function, that 
incorporates a random effect. 
 

 
Fig. 1. Degradation paths of the five MOSFETs (Lu et 
al. 1997) 
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The need to consider a perturbed model is 
determined by the circumstance that the paths of 
the MOSFETs contain negative increments. The 
random effect captures the unit-to-unit variability 
shown by the degradation paths of different 
MOSFETs. The maximum likelihood estimation 
of the parameters of the proposed model from 
perturbed data poses severe computational issues.
Thus, a maximization procedure that combines an 
Expectation-Maximization (EM) algorithm and a 
particle filter method is suggested, which allows 
to mitigate these issues. The same particle filter is 
also used to compute the residual reliability of the 
MOSFETs, their mean remaining useful life, and 
to detect the change point of their degradation 
process, which under the proposed model varies 
randomly from unit-to-unit. The results obtained 
by analyzing the MOSFETs data demonstrate the 
utility of the proposed model and the affordability 
of the suggested estimation procedure.
The paper is structured as follows. Section 2 
introduces the proposed model. Sections 3 and 4 
focus on likelihood function and remaining useful 
life. Sections 5 and 6 illustrate the 
Expectation-Maximization algorithm and the 
particle filter method. Section 7 reports the results 
obtained by applying the proposed model to the 
MOSFETs data and provides details about the
preliminary analyses we have conducted to define 
its structure. Section 8 provides conclusions.

2. The perturbed inverse Gaussian process 
with random effects and bathtub-shaped 
degradation rate

A perturbed degradation process is 
customarily defined as:

where is the hidden (also true) 
degradation process and is a perturbing term,
here intended as a measurement error.

It is assumed that, given , for any 
, any , and any set of times 

, and are conditionally 
independent of , and 
( ).
The hidden process is assumed to 
be an inverse Gaussian process with random 
effect. By following Esposito et al. (2024a), the 
conditional probability density function (pdf) of 
the increment , of 
the inverse Gaussian process is 

expressed as:

where , ,
is a monotonic increasing function, referred 

to as the age function, and is the scale
parameter.
The main novelty with respect to Esposito et al. 
(2024a) is that here, as in Giorgio et al. (2023),
Piscopo et al. (2023), and Esposito et al. (2024b),
the age function is modeled as:

Therefore, the mean function of is:

and the degradation rate function is:

It is easy to show that when 
the (5) is bathtub-shaped.

The variance of is:

Provided that the condition 
is satisfied, the change point (i.e., the time at 
which the degradation rate passes from 
decreasing to increasing) can be computed as:

The hidden process is constructed 
by assuming that varies randomly from unit to 
unit according to the following beta pdf:

, 
where and . To emphasize 
that it is a random variable, hereinafter we will 
denote by and its realization by .
Obviously, under the considered setting, it results 

.
The conditional cumulative distribution function 
(cdf) of given is:
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By following Esposito et al. (2024a), it is assumed 
that the error term depends on and that,
given , it has the conditional pdf:

where ,
, and .

Moreover, it is assumed that, given ,
and do not depend on .

Under this setting, from Eqs. (1) and (9), the 
perturbed measurement , given , is 
inverse gamma distributed, with conditional pdf:

conditional mean:

and conditional variance:

The marginal pdf and cdf of and . are 
not available in closed form. However, by using 
the law of total mean, the following closed form 
can be obtained for the marginal mean of :

that, being 
, coincides with the marginal mean of 

.
Similarly, the marginal variance of can be 
formulated by using the law of total variance:

Similarly, the marginal variance of is:

where is given in Eq. (11) and the 
fractional moment:

(in general) should be computed numerically.
It is worth to remark that, both and 

are non-Markovian.

3. The likelihood function
Let us assume that the degradation level of
units is measured via inspections which are 
contaminated by random errors. Moreover, let us 
denote the vector of model parameters by 

, the age of the th unit (
at the th inspection epoch (

) by , the perturbed 
measurement of its degradation level at by

, and the realization of by .
With these notations, the likelihood function 

of the perturbed data can be expressed as:

where is the set of all 
measurements performed on the unit until ,

is its realization, 
is the entire set of perturbed 

measurements, is its 
realization, , and are the empty set 
and .
The maximum likelihood estimate (MLE) of 
is defined as the value of that maximizes (over 
the parameter space) the likelihood function. The 
likelihood function in Eq. (13) can be efficiently 
computed by using the particle filter algorithm 
described in Section 6. However, even by using 
this tool, the direct maximization of the likelihood 
is still a very challenging task. For this reason, to 
retrieve the MLE of we have used, in a 
combined manner, the EM algorithm described in 
Section 5 and the particle filter method described 
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in Section 6.

4. The cdf of the RUL
As per the classical failure threshold model, we 
assume that a unit fails when its true degradation 
level passes an assigned threshold, say .
Moreover, we assume that failures are not 
self-announcing.
Based on these assumptions, the useful life of a 
unit is defined as:

and its remaining useful life at the 
operating time is defined as:

Accordingly, given that is 
monotonic increasing, we express the conditional 
cdf of , given , as:

where is the set of 
measurements gathered until time and 

is its realization. The 
conditional joint pdf 
does not allow for a simple mathematical 
expression but can be efficiently computed via the 
particle filter described in Section 6.

Note that, given that failures are not 
self-announcing, and that perturbed 
measurements alone cannot allow to say with 
certainty whether a unit is failed or not, in general 
it results that .

From Eq. (14) the conditional mean 
of , given 

can be formulated as:

Under the considered model setting,
, , and 

are not available in closed form 
but can be computed numerically via the particle 
filter described in Section 6. Finally, it is worth to 
note that, for , given that is the empty 
set, being 

the Eq. (14) reduces to:

5. The EM algorithm
The MLEs of model parameters are retrieved by 
using the EM algorithm (Dempster et al. 1974).
The procedure consists of two steps: the E-step 
(expectation step) and the M-step (maximization 
step), which are iterated until a certain 
convergence condition is attained.
To apply the algorithm, it is necessary to define 
observed and missing data. In this paper, the 
missing data are:

� The values of the 
random parameter , and

� The values of the true 
degradation levels of the 

units at the measurement times, where 
, ,

, and is its realization.

Obviously, the observed data are the realizations
of perturbed measurements 

, where and 
.

So stated, the complete likelihood (i.e., of both 
missing and observed data) can be expressed as:

 

with ,
and .

Accordingly, the complete log-likelihood 
function results in:

where:
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is indexed only by the parameters and ,

is indexed only by the parameters and , and:

is indexed only by the parameters , , , and 
, with 

.
After iterations, the E-step consists in 
computing the conditional mean:

where indicates the estimate of obtained by 
performing the M-step and the functions 

, , and can be expressed as:

and

where and .
In these equations, the presence of on the 
right side of the conditional bar indicates that the 
expectations are computed by setting to the 
parameter vector of the conditional distributions
of and given . All the expectations 
are computed via the particle filter algorithm 
illustrated in Section 6.
The M-step consists in maximizing
with respect to . The value of that maximizes

(i.e., the new estimate of ) is denoted 
by . In this paper, the iterative procedure is 
stopped when the absolute relative difference:

where is the likelihood function in Eq. 
(13), drops below an assigned value. The iterative 
algorithm is initialized by assigning a tentative 
estimate of , say .
The maximization of , , and 
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should be performed numerically. Indeed, the 
maximization of
can be further simplified. In fact, it is possible to 

obtain in explicit form the parameter which 
maximizes Eq. (16) as a function of , , and 
as:

Thus, the tentative estimates , , and 
can be retrieved by maximizing the 

3-parameter function 
that is obtained by replacing in 

Eq. (16) with . Next, the tentative 
estimate can be obtained as 

.

6. The particle filter algorithm
We use the particle filter algorithm (Doucet and 
Johansen 2011) to generate a sample of size 
from the joint distribution of and given 

, given the value of .
The method consists of the following two 

steps, which must be iterated times.
� Step 1 (prediction step), th iteration: for any 

, set to , generate a 
pseudorandom realization of ,
compute , and 
append it to the particle vector 

defined at the 
th iteration. The output of this 

prediction step is a set of vectors:

which will be referred to as particles.
� Step 2 (update step), th iteration:

for any , compute the importance 
weight of the th particle as:

resample the particles as per their importance 
weights and rename the new particles as:

In the first prediction step (i.e., for ), 
initialize the algorithm by drawing a 
pseudorandom sample of size from the joint 
distribution of and , denote its elements 
by ( , and define the 
particles as:

The particle 
should be intended as a realization of and 
given , and the particle 

as a realization of 
and given . The conditional 

pdfs that are needed to compute the likelihood 
function in Eq. (13) can be approximated as:

where is the last component of the particle 
generated at 

th prediction step.
Similarly, for example, the conditional mean 

of a function of and , given 
and , can be computed as:

This particle filter algorithm is also used to 
compute the MLE of the cdf of ,

, given in Eq. (14), and the MLE
of the , given in Eq. (15). In 
particular, by using the notation introduced in 
Section 4, if , so that the set 

contains perturbed 
measurements of the degradation level of a certain 
unit, given a pseudorandom sample of size 
from , say , …, , the 
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MLE of can be computed as:

By using this cdf the can be 
computed as in (15).
Then, is obtained as in Eq. (15). 

7. Numerical example and a preliminary 
analysis
In this section, we present the results of a 
preliminary analysis that allows us to justify some 
of the assumptions we made to formulate the 
model, followed by an example of application to
the MOSFETs data displayed in Figure 1 (the 
whole dataset is given in Lu et al. 1997).
As a first step, we have performed a comparative 
study to check whether there are parameters of the 
basic inverse Gaussian process (i.e., without 
random effect), hereinafter referred to as , that 
should be assumed to vary from unit-to-unit. 
In particular, in order to contain model 
complexity, we have assumed that only one out of 
7 parameters of at most could be unit-specific,
therefore formulating 7 competing models. With 
five units in the dataset, the 7 considered 
competing models have 11 parameters (6
common and 5 unit-specific).
Table 1 reports the MLE, , of the log-likelihood, 
(second row) and the values, AIC, of the Akaike 
information criterion index (third row), obtained 
under the considered competing models, where 

and is the number of parameters
(Akaike 1974). Each column refers to the model 
that treats as unit-specific the parameter indicated 
in the first row.
Under the model the AIC value is 140.5. The 
MLEs under can be computed as in Esposito 
et al. (2024a), by modeling as in (3). Table 1 
indicates that, according to the AIC, the best 
model for the MOSFETs data, among the 
considered ones, is the model that treats as 
unit-specific, hereinafter referred to as .

Table 1. Results of the preliminary analysis.

 

Moreover, to confirm that the model 

outperforms the model , we have conducted a
likelihood ratio test with the following null, ,
and alternative, , hypotheses:
� : all the parameters are common (model 

.
� : only is unit specific (model ).
The test statistic (where 

and are the MLEs of 
under and , respectively) resulted equal to 

and it is approximately distributed as a 
chi-square variable with 4 degrees of freedom.
The negligible -value associated with the test 
conclusively leads to reject the null hypothesis
and, consequently, to assume that varies from 
unit to unit.
The MLEs of model parameters, under model ,
are as follows: , ,

, , , .
The MLEs of , obtained for the five MOSFETs 
are , , , and .
Indeed, the use of a beta pdf (7) for is also 
justified by the circumstance that all the MLEs of 

are safely smaller than .
In addition, given that is greater than , the beta 
pdf guarantees that the inequality 

is surely satisfied. This last condition also 
ensures that the degradation rate function is 
bathtub-shaped and (thus) that the change point 
exists for any given .
By applying the proposed degradation model to 
the MOSFETs data we have obtained the 
following MLEs of its parameters: ,

, , ,
, , , .

Figure 2 shows that the ML estimates of the mean
and standard deviation of 

fits very well the corresponding empirical 
estimates. The same figure also shows that the 
MLE of the standard deviation of and 
almost overlap with each other, revealing that in 
this application the measurement error is very 
small.
Figure 3 reports the MLEs of the conditional cdf 
of given , at the last 
measurement time, . These values
have been defined by setting .
Finally, Table 2 reports, for each MOSFET, the 
values of (second row) and the 
conditional mean, of the 
change point, at the last measurement time 
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. The mean of is 
computed as in Eq. (17), by setting:

where is denoted by a capital letter to remark 
that, depending on , the change point varies 
randomly from unit to unit.

Fig. 2. Empirical and estimated mean and standard 
deviations of and .

Fig. 3. Conditional cdf of given ,
at .

Table 2. Values of and
for all MOSFETs in the dataset, at .

MOSFET #

 

Fig. 1 and Table 2 give clear evidence of how the 
and the mean of the change point vary 

from unit to unit. Finally, it is worth remarking 
that, given that the perturbed process is not 
Markovian, the and 

reported in Table 2 depend on the entire 
observed degradation path .

8. Conclusions
This paper has proposed a new inverse Gaussian 
process with bathtub-shaped degradation rate 
function which can be used in the joint presence 
of measurement error and random effect. 
Maximum likelihood estimates have been 
computed by adopting, in a combined manner, an 
expectation-maximization algorithm and a 
particle filter method. The model has been applied
to a set of real degradation data of five MOSFETs.
Obtained results have demonstrated the utility of 
the proposed model and the affordability of the 
suggested estimation approach.
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