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This paper addresses the NASA and DNV challenge on optimization under uncertainty, where participants were
tasked with calibrating the uncertainty models of aleatory and epistemic parameters of an unknown system using a
computational model and synthetic data, and identifying control parameters for different objectives. We present two
approaches for model calibration, namely Bayesian optimization and sequential Bayesian updating. Additionally, a
reliability-based optimization scheme based on a Bayesian approach and subset simulation is used to tackle a design
optimization problem.
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1. Introduction

Safety-critical systems frequently operate in harsh
environments characterized by significant uncer-
tainties. Organizations such as DNV and NASA
are often challenged by limited quantitative
data, complex and uncertain operating conditions,
whether in the development of advanced engi-
neering systems or ongoing monitoring and ver-
ification. Motivated by these challenges, NASA
Langley Research Center and the DNV Group Re-
search and Development have initiated the Chal-
lenge on Optimization under Uncertainty (see
Agrell et al., 2024), which seeks to advance
methodologies in uncertainty quantification (UQ)
and design optimization.

The challenge framework is
deliberately discipline-independent, allowing re-
searchers to focus on two key aspects: construct-

ing robust uncertainty models (UMs) and opti-
mizing design parameters under mixed aleatory
and epistemic uncertainties. Aleatory uncertainty,
stemming from inherent variability, and epistemic
uncertainty, due to incomplete knowledge, both
play critical roles in accurately representing the
behavior of complex systems. Participants are pro-
vided with a simulation model alongside (syn-
thetic) real system data, which collectively serve
as the basis for updating and calibrating these
UMs. After obtaining the UMs for these aleatory
and epistemic parameters, the optimal control pa-
rameters need to be specified according to dif-
ferent performance and risk requirements under
mixed uncertainties.

In our response, we first present two approaches
to calibrate the UMs of the aleatory and epistemic
parameters. These models form the foundation
for our subsequent design optimization. Then, a
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Kriging surrogate model-based design optimiza-
tion scheme is developed to tackle the second
problem of the challenge.

2. Problem 1: Uncertainty quantification

Before diving into calibrating the UMs for the
aleatory and epistemic parameters, a few general
remarks are given. First, it is assumed that each
time-varying response of the system (both com-
putational model and synthetic real system) is
stationary, which means time-dependency is not
considered. Second, it is noteworthy that the data
exhibits strong dependencies in the first three out-
puts (y1,2,3) and the second three outputs (y4,5,6).
Therefore, the data can be split into these two
groups and a separate distance measure can be
defined for each group. Exemplary outputs are
shown as bi-variate plots in Fig. 1. For (y1,2,3),
the data is concentrated in a three-dimensional
manifold, whereas (y4,5,6) are linearly dependent.
For this reason, only y4 and y5 are shown on
the figure. Changing the control parameters Xc

affects the location and shape of the manifold, as
well as the angle and magnitude of the vector that
is spanned by (y4,5,6). We note that Xe changes
the angle when conditioned on a fixed value of Xc.

Fig. 1. Bi-variate outputs y for random samples of
Xa, Xe. Colors indicate different values of Xc.

2.1. Data generation

Since each team was only allowed to request
N = 10 datasets in addition to the initial example
dataset, it is crucial to carefully select the control
variable X

(i)
c to maximize information gain for

calibrating the UMs. In this study, three datasets
are generated corresponding to the following con-
trol parameters:
X

(0)
c = [0.5330, 0.6660, 0.5000] (example)

X
(1)
c = [0.6063, 0.1242, 0.5856]

X
(2)
c = [0.9775, 0.0038, 0.8015]

X
(3)
c = [0.1201, 0.1715, 0.2152]

The first control variable, X(1)
c , is chosen by max-

imizing the generalized first-order Sobol’ indices
with respect to Xa, where Xa and Xe are as-
sumed to be independent uniform random vari-
ables U(0, 1), and the random seed ω is treated
as a discrete uniform random variable [0, 232− 1].
X

(2)
c is chosen based on the maximum sensitivity

of the outputs to the control parameters. Based on
the first UM, samples are drawn for Xa and Xe,
then the output sensitivity is calculated by stan-
dardizing the outputs and subsequently computing
the variance. X(3)

c is identified similarly to X
(1)
c

using the UMs of Xa and Xe calibrated by the
data corresponding to X

(1)
c .

2.2. Subproblem 1.1: Uncertainty Models

For the calibration of the UMs, two different ap-
proaches are presented. The first one is based on
Bayesian Optimization (BO) and the second one
uses sequential Bayesian updating.

2.2.1. Uncertainty Model A: Bayesian
optimization with multi-source data

In this approach, we assume that Xa and Xe

are mutually independent, with Xe following in-
dependent beta distributions and Xa following
marginal beta distributions with a bivariate Gaus-
sian copula. A probability distribution is assigned
to the epistemic parameters to allow them being
inferred in a Bayesian way.

Therefore, eleven parameters need to be in-
ferred to determine the UMs of Xa and Xe.
The parameters include ten Beta distribution pa-
rameters for Xa1, Xa2, Xe1, Xe2, Xe3, as well as
the Gaussian copula parameter ρ, which cap-
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tures the correlation between Xa1 and Xa2.
These are collectively represented by θ =

[αa1, βa1, αa2, βa2, αe1, βe1, αe2, βe2, αe3, βe3, ρ].
To determine these parameters, we employ an
optimization-based approach. The optimization
objective is to minimize the weighted K-L diver-
gence:

L(θ) =
3∑

i=1

γiDKL(P
(i)
real(y) ‖ P (i)

sim(y|θ)), (1)

where γi are the weights of different K-L di-
vergences and equal weights are used here. P (i)

real

and P
(i)
sim represent the multivariate PDF estimated

from the histogram of real data Y(i) and the sim-
ulated data Y(i) generated by the computational
model corresponding to the i-th control param-
eters X

(i)
c , respectively. Then, the optimization

formulation for inferring θ is expressed as:

min
θ

L(θ), s.t. θ ∈ [θL,θU ] (2)

where the lower bound of the parameters θL

is set as [0.01, 0.01, 0.01, 0.01, 1, 1, 1, 1, 1, 1,−1]
and θU is set as [50, 50, 50, 50, 5000, 5000, 5000,
5000, 5000, 5000, 1] here. To solve the optimiza-
tion problem efficiently, Bayesian optimization
(Jones et al., 1998) is used. Note that the random
seed ω is treated as a discrete uniform random
variable [0, 232 − 1].

After the Bayesian optimization, the solution of
the optimization problem in Eq. (2) is given as:
θ̂ = [6.44, 18.87, 8.15, 22.40, 2388.11, 4867.03,

3843.83, 2253.14, 1988.92, 2154.10, 0.88]. We
denote this calibrated UM for aleatory and epis-
temic inputs as UMA. Fig. 2 shows the calibrated
joint distribution Xa ∼ fa, and Fig. 3 shows the
calibrated Xe. Using the modes of the final cali-
brated beta distributions, the best guess of the true
value of Xe is X∗

e = [0.3291, 0.6305, 0.4801].
From the results of Fig. 3, the 95% confidence in-
tervals for Xe are Xe1 = [0.3184, 0.3400], Xe2 =

[0.6183, 0.6425], and Xe3 = [0.4649, 0.4953].
The example dataset is used to validate the

calibrated UMA. The comparison of the real and
simulated data using the calibrated UM is shown
in Fig. 4. The system response generally matches
the data. Further, the comparison by fixing the

Fig. 2. Comparison of Xa ∼ fa calibrated in UMA
(green) and UMB (blue).

Fig. 3. Comparison of Xe ∈ E calibrated in UMA
(green contour) and UMB (shaded blue) for Xe.

epistemic parameters at X∗
e is shown in Fig. 5.

Here, a better match can be observed.

2.2.2. Uncertainty Model B: Sequential
approximate Bayesian computation

In the second approach, the calibration of
the input model parameters is based on a
sequential Transitional Markov Chain Monte
Carlo (TMCMC) method (see Ching and Chen,
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Fig. 4. Comparison of the model output using the
calibrated UMA varying Xe ∈ E (green) and data
(orange).

Fig. 5. Comparison of the model output using the cali-
brated UMA fixing Xe at X∗

e (green) and data (orange).

2007). First, the epistemic parameters Xe and
then the aleatory parameters Xa are sequen-
tially updated using an implementation based
on the UncertaintyQuantification.jl
(Behrensdorf et al., 2025) Julia package. In
this regard, both aleatory and epistemic parameter
groups Xa and Xe are treated independently as
an underlying assumption. This is based on the

distinct effects that these parameters exhibit on
the model output, as observed in prior analyses
mentioned in the beginning of Section 2.

First, the epistemic input parameters θe = Xe

are updated sequentially using N = 5000 sam-
ples starting with the control parameters X(0)

c and
the corresponding dataset. The linear relationship
identified for the outputs y4,5,6 (see Fig. 1) is used
to calibrate Xe. We infer the epistemic parameters
for a fixed set of control parameters by identifying
the direction of this line. We assume a uniform
prior for all epistemic parameters Xe ∼ U(0, 1)

in the a first updating sequence. To capture the
information given in a dataset for the i-th control
variable, Y(i)

4,5,6, Approximated Bayesian Compu-
tation (ABC) with a Gaussian likelihood function
is used:

L ∝ exp
[
− (d/ε)

2
]
. (3)

Here, d describes the discrepancy between sim-
ulated output and real data and ε is a scale fac-
tor. In this regard, the model output Y(i)

4,5,6 and

data Y(i)
4,5,6 are processed such that every real-

ization of the output is interpreted as a position
vector normalized by its length. Based on this,
the Euclidean distance between both unit vectors
Ŷ

(i)
4,5,6 and Ŷ(i)

4,5,6 is used as the discrepancy met-
ric in Eq. (3) along with ε = 10−3. For the
second and third updating sequences, the control
parameters X

(1)
c and X

(2)
c are used along with

the corresponding computational model outputs
and datasets. We change the prior distribution to a
Gaussian mixture model for both updating steps to
approximate the resulting posterior input samples
of θe after the first updating sequence. TMCMC
and the Gaussian ABC log-likelihood setup are
again utilized. Through a three-step sequential
updating process, we derive a hyper-rectangular
set of Xe, depicted by the convex hulls of the
posterior samples in Fig. 3. This method yields
the best estimate for the true epistemic parameter
as X∗

e = [0.3349, 0.6083, 0.4234] using the max-
imum likelihood estimate.

Subsequently, the distributions for both aleatory
parameters Xa are inferred from the modified
output data Y1,2,3,||4,5,6||. By observing that the
last three outputs align on a line, we combine them
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using the Euclidean norm, thereby reducing the
output dimensionality from six to four. The TM-
CMC method is employed again, with N = 500

samples and a Gaussian ABC log-likelihood (with
ε = 10−1). During the aleatory updating, the epis-
temic parameter remains fixed at its prior MLE. To
identify aleatory parameter distributions, we apply
a double-loop approach as detailed by Bi et al.
(2019). In this approach, both marginals are mod-
eled as Beta distributions: Xai

∼ Beta(αi, βi).
The distribution parameters αi and βi, considered
as additional epistemic parameters, are initially
assumed to follow αi, βi ∼ U(0, 25). This setup
forms a two-layer structure, with each (αi, βi)

realization yielding a marginal PDF for Xai
. De-

pendencies among Xa are captured by a Gaussian
copula with ρ ∼ U(−1, 1). Thus, five hyperpa-
rameters are updated as θa = [α1, α2, β1, β2, ρ].
The discrepancy between the data Y1,2,3,||4,5,6||
and simulations Y1,2,3,||4,5,6|| is measured using
the Bhattacharyya distance, employing a discrete
version with the binning algorithm (Bi et al.,
2019) and Nbins = 20.

In subsequent updates, the prior PDF of θa is
replaced by a Gaussian mixture model, fit with
posterior samples from the first step. Output data
for further updates is derived from the control
parameters X(1)

c and X
(2)
c . This process results in

the final uncertainty model for Xa, shown in Fig.
2, with 100 realizations of the fitted parametric p-
box, with each realization comprising 100 sam-
ples.

Together with the set of epistemic parameters
presented in Fig. 3, this forms the second uncer-
tainty model, denoted as UMB. To validate the
calibrated model, we compare the data generated
by X

(3)
c with the outputs derived from X∗

e and the
five parameters defining the joint distribution for
Xa. Fig. 6 illustrates a comparison between the
data (orange) and the model response (blue).

2.2.3. Comparison of the uncertainty models

We note that generally, the BO approach identifies
much narrower distributions than the sequential
approach. This is mostly because the sequential
approach uses hybrid uncertainties with parame-
terized beta distributions for Xa, while the BO

Fig. 6. Comparison of the model output using the cal-
ibrated UMB fixing Xe at X∗

e (blue) and data (orange).

approach directly updates the parameter’s distri-
butions. Therefore, as is shown in Figs. 2 and
3, UMA can be seen as subset of UMB, at least
for the aleatory parameters. Further, the marginal
distributions of Xa1 match well. The discrepan-
cies in the epistemic parameters are larger, with
UMA again having narrower support than UMB.
Nevertheless, for the most likely value of Xe, both
methods show very similar results.

2.3. Subproblem 1.3: Output Intervals

Following the calibration of UMs, the next task
is to find the tightest output bounds that suffice
a confidence level α for all simulated outputs.
We use Xa and Xe per UMB as detailed in Sec.
2.2.1, with X

(2)
c listed in Sec. 2.1. We employ a

double-loop sampling approach, as in Sec. 2.2.2.
For configurations i = 1, . . . , nae, we sample dis-
tribution parameters and realizations of Xe, and
for each i, generate m = 1, . . . , n samples. This
produces an output tensor Yimtj , with i as the
outer loop, m as the inner loop, t as time, and j as
the output index (j = 1, . . . , ny). To obtain global
output bounds within a prescribed probability α,
we estimate confidence intervals simply by:

l(i, j) = Q1−α(min
t

Yij)

u(i, j) = Qα(max
t

Yij)
(4)
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where Qα(x) is the α-quantile of x. The minimum
and maximum outputs over time for each con-
figuration i are determined using statistics from
the inner loop samples. The following approach
is then implemented to identify the bounds: Cal-
culate an elementwise distance, normalize it, and
apply a row-wise norm. Finally, the bounds are de-
termined by the norm maximizing element i∗, i.e.
llocal(j) = l(i∗, j) for the lower-, and ulocal(j) =

u(i∗, j) for the upper bound.
To obtain the results of different α values, 105

samples have been analyzed. For each of the esti-
mated bounds, by design, the requirements on the
confidence level are satisfied. Some results can be
seen in Tab. 1. However, the results are varying for
different control parameters, suggesting that the
amount of information on the bounds was still not
enough.

Table 1. Prediction intervals for X(2)
c .

ny
α = 0.95 α = 0.99

llocal ulocal llocal ulocal

1 0.0149 3.35 0 3.35
2 0.0046 3.35 0 3.35
3 0.0918 3.35 0 3.35
4 94.12 2288.30 9.113 4153.32
5 79.05 1922.01 7.654 3488.49
6 22.50 546.93 2.178 992.699

3. Problem 2: Design optimization

Building upon the uncertainty calibration and
propagation, Problem 2 addresses optimizing the
design with respect to the control variables Xc un-
der diverse objectives. The goal is either to max-
imize performance, represented by J(Xe,Xc),
or to minimize the system’s failure probability,
pofsys(Xe,Xc). Given the high computational de-
mands associated with reliability-based design op-
timization (RBDO), which escalate with hybrid
uncertainties, we aim to mitigate these using Krig-
ing surrogate models within the Bayesian opti-
mization framework (Jones et al., 1998).

We use UMB as baseline model for the opti-
mization since the uncertainty bounds are wider
than in UMA. This increases the associated uncer-

tainty and we expect to obtain conservative and
robust results, which is crucial for safety-cricital
systems. By sampling from UMB for Xa and Xe,
and generating Sobol’ samples for Xc, we acquire
outputs for J(Xe,Xc) and pofsys(Xe,Xc). These
samples are used to train the surrogate model for
optimizing the design. In problem 2, we consider
the following five objectives for the optimization:

I. Performance-based Design: Maximize J .
II. Reliability-based Design: Minimize pofsys.

III. ε-Constrained Design: Maximize J subject to
pofsys ≤ ε = 10−3.

IV. ε-Constrained Design: Maximize J subject to
pofsys ≤ ε = 10−4.

V. Risk-based Design: Maximize J subject to
E [h | h < 0] ≥ −300.

In the last objective E [h | h < 0] denotes the ex-
pectation of limit state function conditioned on
values in the failure domain, h < 0. In contrast to
the failure probability pofsys, this quantity serves
as a measure for the extent of overshoot of the
threshold. Detailed descriptions of the different
objectives are available in Agrell et al. (2024).

The results of Case I, the performance-based
design, are summarized in Fig. 7. In this figure,
the initial set of 128 points, used to construct the
metamodel, as well as the additional 20 points
added through Bayesian optimization, are dis-
played. Each point corresponds to a realization of
Xc ∈ [0, 1]3, and the color in Fig. 7 represents
the performance metric minXe∈E J(Xe,Xc).

This performance metric is calculated via a
double-loop Monte Carlo setup. In the first loop,
nae = 100 realizations of Xe ∈ E, along with
samples of the parameterized p-boxes, are gener-
ated. In the second loop, for each realization of
the p-box, n = 1000 samples of Xa ∼ fa are
drawn. The optimized performance-based design,
denoted as X∗

c,I, is marked by an orange diamond
in the figure. A comprehensive comparison of all
objectives is presented in Tab. 2.

For the reliability-based design, we aim to iden-
tify control variables that minimize the failure
probability, denoted as pofsys. To derive a design
that meets this criterion, represented by X∗

c,II, we
initially generate 64 samples of control variables
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Table 2. Comparison of the identified designs and objectives.

i Objective Control Variable X∗
c,i Interval J Interval pofsys

I Performance-based [0.6455, 0.3245, 0.4937] [5.674, 9.097] [1.50 · 10−7, 7.39 · 10−4]

II Reliability-based [0.4466, 0.5879, 0.6190] [5.467, 9.110] [2.94 · 10−12, 1.38 · 10−5]

III ε-Constrained (ε = 10−3) [0.6455, 0.3245, 0.4937] [5.674, 9.097] [1.50 · 10−7, 7.39 · 10−4]

IV ε-Constrained (ε = 10−4) [0.4466, 0.5879, 0.6190] [5.467, 9.110] [2.94 · 10−12, 1.38 · 10−5]

V Risk-based [0.3805, 0.1852, 0.5367] [5.175, 8.621] [6.76 · 10−8, 5.89 · 10−4]
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Xc1

X
c
3

0 0.5 1

Xc2

Fig. 7. Samples of Xc with performance-based design
objective values minXe∈E J(Xe,Xc) and optimiza-
tion result from Bayesian optimization.

using Sobol’s sampling. Subsequently, we esti-
mate the imprecise failure probability for each
control variable.

Subset simulation (Au and Beck, 2001) is em-
ployed to estimate the range of failure prob-
abilities for each control variable, considering
nae = 100 different realizations of Xe. From
this, we obtain the worst-case estimate, specifi-
cally maxXe∈E pofsys, which is depicted in Fig.
8. Additionally, 20 new samples are incorpo-
rated through Bayesian optimization to identify
the global minimum.

The surrogate models constructed to find the
respective extrema in the first two optimization
problems are used for the constrained optimiza-
tion in tasks III and IV. As seen in Tab. 2, the
performance-based design X∗

c,I satisfies the con-
straint max pofsys ≤ 10−3. Hence, this global

0 0.5 1

0

0.5

1

X
c
2

Samples

min pofsys

10−5

10−4

10−3

10−2

10−1

pofsys
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0

0.5

1

Xc1

X
c
3

0 0.5 1

Xc2

Fig. 8. Samples of Xc with reliability-based design
objective maxXe∈E pofsys(Xe,Xc) and optimization
result from Bayesian optimization.

optimum also serves as the solution for con-
strained optimization. The constraint in problem
IV, max pofsys ≤ 10−4, is not satisfied by X∗

c,I.
However, we find that the design X∗

c,II maximizes
J under the ε-constraint. For the final objective,
we calculate the expected value E [h | h < 0] from
the data generated with the subset simulations
employed in task II. We then construct a Kriging
surrogate model for the expected value based on
this data and use this model, along with the one
for J , to perform the constrained optimization.

A comprehensive summary of the different ob-
jectives and results can be found in Tab. 2. In ad-
dition to the identified control variables, the table
presents the ranges of the performance metric J

and the failure probability pofsys. All identified de-
signs satisfy the requirement max pofsys ≤ 10−3.
However, only one design satisfies the stricter
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requirement max pofsys ≤ 10−4, namely the
reliability-based design.

When comparing the ranges of J , it becomes
clear that they are within the same order of mag-
nitude. Notably, the reliability-based design rep-
resents a good compromise: while the worst-case
J is only slightly smaller than the performance-
based design, the failure probability is signifi-
cantly reduced. Moreover, the risk-based design
achieves the highest best-case J . In terms of
performance, the risk-based design is the least
favorable. However, this design limits the ex-
ceedance of the threshold of the limit state func-
tion to some extent. If minimizing that exceedance
is the primary goal, the risk-based design X∗

c,V

should be selected. Otherwise, we recommend
the reliability-based design X∗

c,II, which offers a
good balance between low failure probability and
performance.

A critical evaluation of the results and the pro-
cess reveals that the findings are constrained by
the precision of the utilized Kriging models. Using
a more generalized Gaussian process approach
(Rasmussen and Williams, 2005) could yield bet-
ter results, since the variability of the outputs
could be captured. Nevertheless, this approach
was chosen to balance accuracy and computa-
tional feasibility.

4. Summary and conclusions

This work addresses the NASA and DNV 2025
challenge on optimization under uncertainty. We
utilize Bayesian optimization and sequential ABC
to calibrate UMs for aleatory and epistemic pa-
rameters. Despite using only three datasets, our
approaches for epistemic uncertainty yielded sim-
ilar outcomes. Our study was limited to a time-
independent representation, and we expect that in-
corporating time-dependent calibration could im-
prove data-simulation alignment. Future analyses
with more data could enhance understanding and
model accuracy. Further, due to the nature of the
challenge, results are restricted by limited knowl-
edge of the measurements. Some understanding of
the noise in the data or the physics behind data
generation surely would give more insight in how
to approach the model calibration.

For the design optimization, we present three
unique design configurations and discuss their
suitability for different scenarios. Overall, we find
that a reliability-based design offers the best com-
promise between safety and performance in most
cases.
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