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We consider the problem of estimating the importance of components and parameters in the dynamic simulations
of complex systems. We aim at a conceptualization that is capable of retaining the meaning of traditional (static)
importance measures in a dynamic concept. We also approach the problem by defining the importance measures in
such a way that they draw from the rich output of a dynamic simulator exploiting information that is typically hidden
when focusing solely on the probabilistic-level data (e.g., component failure probabilities, system-level failure
probability). By incorporating detailed observable information such as failure times and component operational
characteristics, additional dimensions of decision making are made available to system designers and operators that
allow a focus on the margin to failure. The goal of our work is to create a scalable and flexible approach to enrich
the insights from a time- and physics-informed simulation with explanations as to what are the drivers of the system
behavior at a fundamental level of system behavior.
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1. Introduction

Importance measures play a relevant role in aiding
reliability engineers in understanding the elements
(component, parameters) that matter the most for
the system or application under scrutiny. Knowing
which component is important helps analysts pri-
oritize maintenance activities or quality assurance
programs.

Over the years, a variety of reliability impor-
tance measures have been developed. Some of
them are designed for specific applications, some
of them are of a more general nature. In the first
class, we find indicators such as the ones proposed
in Dui et al. (2017) for preventive maintenance,
or Li et al. (2017) for AC power systems, in the
second we find indices such as the Birnbaum im-
portance measure, the Fussell-Vesely importance,
the Risk Achievement worth, the Risk Reduction
Worth and several others. In this work, we con-
sider a general setting, in which a reliability metric
of interest is computed by a complex dynamic
simulator that captures both the logical configu-
ration and physical characteristics of the system.
The logical configuration aims to model how the

components are connected. At the basis of the
logical configuration is a structure function from
which one determines the minimal path and cut
sets. The physics portion of the system increases
the realism of the analysis, making the simulation
more powerful.

The failure and physics modeling aspect of our
work is addressed through the use of the open
source EMRALD simulation tool. This tool is un-
der development at the Idaho National Laboratory
(INL), and released through GitHub, with the goal
of representing complex systems using risk and
reliability analysis approaches INL (2024). EM-
RALD focuses on a couple of important character-
istics, including: (a) providing a simplifying mod-
eling approach using states and a modern browser-
based editor; (b) allowing the user to couple other
software tools including physics simulations; (c)
calculating detailed time-based sequence of sys-
tem and component state-space evolution, and (d)
allowing traditional aspects of reliability analysis
such as fault trees. The analysis of EMRALD
models takes place through a separate module that
performs the probabilistic simulation. EMRALD
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adopts standard approaches such as the use of
JSON for storing all modeling information.

2. Importance Measures

We review the classical importance measure
setup, as originating from the works of Birnbaum
(1969) and Barlow and Proschan (1975). One con-
siders a binary system with n components, each
of which can be in two states, working (0) or
failed (1), with indicator variable ϕi = {0, 1}. We
denote by Ω the collection of the 2n configurations
and collect the indicator variables in vector ϕ =

[ϕ1, ϕ2, ..., ϕn]. The final state of the system is
the top event and Ψ = {0, 1}. The relationship
that links the top event to the components states
is called structure function, which one denotes via
Ψ = Ψ(ϕ), with Ψ : Ω �→ [0, 1]. A minimal cut
set is a system state

To define the the system reliability, we need
two additional notions: a mission time T and the
probabilities of component failures within T . We
let P be the probability measure on (Ω,B(Ω))
that reflects the engineer/analyst/decision-maker’s
degree of belief about the likelihood of the compo-
nent failures. We then let pi be the probability that
ϕi switches from 0 to 1 within the time horizon
T , that is pi = Pr(ϕi = 1, T ). For simplicity,
because we consider a fixed time horizon, we drop
the reference to T in the reminder. The reliability
of the system is then defined as

R = Pr(Ψ = 0), (1)

and correspondingly the system failure probability
is

F = 1−R = Pr(Ψ = 1). (2)

We consider a coherent system for simplicity.
A central notion in the definition of reliability
importance measures is played by criticality. A
component is critical if it is in such a state that
its failure causes the system to fail. Let ϕi the
indicator variable of component i and ϕ∼i the
vector collecting the indicato variables of all other
components. Using the notation in Birnbaum, we
define the criticality indicator variable at ϕ∼i as

δi(ϕ∼i) = Ψ(1i, ϕ∼i)−Ψ(0i, ϕ∼i) (3)

Component i then critical in state ϕ∼i if
δi(ϕ∼i) = 1, that is, if the component switches
from working to failed when the other compo-
nents are in state ϕ∼i the system also switches
from working to failed.

We then define the Birnbaum importance of
component i as the probability that component i
is critical for system failure:

Bi = Pr(δi(ϕ∼i) = 1). (4)

Under the hypothesis of independent component
failure probabilities, it turns out that the Birnbaum
importance is the partial derivative of the system
reliability function

Other well known importance measures are the
Risk Achievement Worth and the Fussell-Vesely
importance

The Risk Achievement Worth (RAW) suggests
the potential increase in risk level in case compo-
nent i failed (as stated in Vesely et al. (1983)). We
can write the RAW of a component on a ratio scale
as:

RAWi =
Pr[Ψ(ϕi = 1, ϕ∼i) = 1]

Pr(Ψ = 1)
, (5)

or alternatively, as in Vesely et al. (1983), on an
interval scale:

RAWi = Pr[Ψ(ϕi = 1, ϕ∼i) = 1]− Pr[Ψ = 1].

(6)
The Risk Reduction Worth Vesely et al. (1990)

quantifies the change in risk when component i is
assumed to be perfectly reliable. Hence, we have:

RRWi =
Pr(Ψ = 1)

Pr[Ψ(ϕi = 0, ϕ∼i) = 1]
, (7)

or alternatively, as in Vesely et al. (1983), on an
interval scale:

RRWi = Pr(Ψ = 1)−Pr[Ψ(ϕi = 0, ϕ∼i) = 1].

(8)
The Fussell-Vesely (FV) importance measure

Fussell (1975) is defined as the conditional proba-
bility that a specific basic event has occurred given
that the system has failed. The FV importance
measure of component i can then be written as

FVi = Pr(ϕi = 1|Ψ = 1) =
Pr(ϕi = 1 ∧Ψ = 1)

Pr[Ψ = 1]
.

(9)
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Finally, we have the Barlow-Proshan importance

BPi =

∫ ∞

0

BIi(t)fi(t)dt (10)

which is the probability that failure of component
i coincides with the system failure.

3. The Problem

The problem we address in our work is to calcu-
late these importance measures from a complex
simultation. In particular, we aim at extracting the
importance measures from a computer program
that mixes not only the logical behavior of the
system, but also relevant simulation parts related
to the system thermodynamics and more directly
from the simulation data, without performing ad-
ditional calculations.

The challenge we face is that under consider-
ation is a system with an intrinsecally stochastic
response. Also, when components are highly re-
liable, failures are rare and we need to simulate
thousands of scenarios to obtain a significant num-
ber of top even realizations. This aspect increases
computational burden. The cost would increase
even more if the importance measures were calcu-
lated via sensitivities. For instance, suppose we fix
the number of stochastic replicates (scenarios) to
N . Then, computing RAWi would imply running
the simulation C = nN times, exacerbating the
computational difficulties.

We tackle the estimation problem of calculating
the importance measures at a cost C = N , that is
post-processing the output of the stochastic simu-
lator, without actually performing any additional
algorithmic operation.

To do so, we need to define estimators for the
importance measures we presented before. Some
observations. Let ST be the subset of scenarios
in which the system has failed and denote with
s its cardinality. Then,

s

N
is an estimate of the

system failure probability. By the law of large
numbers, as N increases, this estimate tends to
the probability of system failure. Let ni be the
number of scenarios in which component i fails.
Then,

ni

N
is an estimate of the component failure

probability. Let us now study estimators for the
importance measures.

For the Birbaum importance we need to
proceed as follows. Consider first estimating
Pr(Ψ(1i, ϕ−i)). This is the conditional system
failure probability given that component i has
failed. Consider the subset of scenarios in which
component i has failed. Let ni be the number of
these scenarios. Then, let fi the number of times
in which the system fails in this set. Then, the ratio
fi
ni

is an estimate for the conditional system failure

probability Pr(Ψ(1i, ϕ−i)). Formally,

fi(N)

ni(N)
→

N→∞
Pr(Ψ(1i, ϕ−i)), (11)

where we have evidenced that the ratio
fi(N)

ni(N)
depends on N . An estimate of Pr(Ψ(0i, ϕ−i)) is
found in a similar way. Consider the subset of
scenarios in which component i has not failed,
whose cardinality is N − ni. Then let f i the
number of scenarios in which the system fails,
given that component i has not failed. Then, the

ratio
f i

N − ni
is an estimate of Pr(Ψ(0i, ϕ−i)).

Then, a difference between these two numbers is
an estimate of Bi, which we denote by B̂i.

An estimate of RAWi is given by
fi
ni

and an

estimate of RRWi is given by
N − ni

f i

.

An estimate of FVi is found as follows. Con-
sider all scenarios in which component i fails
and also the system fails and denote by fvi their
number. Then, an estimate of FVi is given by

F̂ V i =
fvi
ni

. (12)

Finally, a stochastic simulation approach also
allows us to easily estimate the Barlow-Proschan
importance of component i. The count consists
in taking all scenarios in which the system fails
simultaneously to component i (let this number
be bpi) and normalize by ni. We then define the
estimate as

B̂P i =
bpi
ni

. (13)

This number gives us the probability that compo-
nent i causes the system to fail.
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4. Case Study

As an illustrative example, we use a four com-
ponent system designed to work as two redun-
dant trains with a valve and pump in each. We
report the system logic structure in Figure 1.
Given the logical connections in Figure 1, if we
let φ1, φ2, φ3, φ4 denote the Boolean variables of
pumps 1 and 2, and valves 1 and 2, respectively,
we obtain the structure function:

Ψ = (1−(1−φ1)(1−φ3))(1−(1−φ2)(1−φ4))

(14)
Simplifying, we obtain:

Ψ =φ1φ2 + φ1φ3 + φ2φ3 + φ3φ4

− φ1φ2φ3 − φ1φ2φ4 − φ1φ3φ4

− φ2φ3φ4 + φ1φ2φ3φ4

(15)

Assuming independent failures, we get the system
failure probability:

F = P1P2 + P1V2 + P2V1 + V1V2

− P1P2V1 − P1P2V2 − P1V1V2 − P2V1V2

+ P1P2V1V2

(16)

where P1 = Pr(φ1 = 1), P2 = Pr(φ2 = 1)

denote the pump failure probabilities and V1 =

Pr(φ3 = 1), V2 = Pr(φ4 = 1) the valve failure
probabilities.

The importance measures can then be obtained
analytically. By taking the derivative of F with
respect to the failure probability of the first pump,
we find the Birnbaum importance:

B[Pump1] =P2 + V2 − P2V1 − P2V2

− V1V2 + P2V1V2.
(17)

We also find the following expressions for the
RAW and Fussell-Vesely:

RAW [Pump1] =
P2 + V2 − P2V2

F
, (18)

and

FV [Pump1] =
P1V2 + P1P2 − P1V2P2

F
, (19)

Assuming exponential failure probabilities,

P1(t) = P2(t) = 1− e−λpt and

V1(t) = V2(t) = 1− e−λvt,
(20)

we find the Barlow-Proschan importance of the
first pump from

BP [Pump1] =

∫ ∞

0

B[Pump1](t) · λpe
−λpt d t.

(21)
Assigning the failure rates λp = 0.003[1/h] and
λv = 0.002[1/h] for the pumps and valves, respec-
tively, at t = 24, the component failure probabili-
ties are P1 = P2 = 0.069 and V1 = V2 = 0.047.
The system unreliability is F = 0.0128. Substi-
tuting these values is Equations 17-21, we find the
numerical values of the importance measures in
Table 1.

Table 1. Analytical values of the importance measures.

Component B RAW FV BP
P1 0.116 8.84 0.61 0.3
P2 0.116 8.84 0.61 0.3
V1 0.116 8.84 0.41 0.2
V2 0.116 8.84 0.41 0.2

The Fussell-Vesely for the pumps is approxi-
mately 33% larger than that of the valves. The
reason for this is twofold: (1) the system is “sym-
metric” meaning the pumps and valves appear in
the cut sets in the same manner and (2) the failure
rate of the pumps is 33% larger than the valves.
Since the failure models of these components
are assumed to be exponential, the mean-time-to-
failure (MTTF) are 333 hours and 500 hours for
the pump and the valve, respectively.

5. Numerical Experiments: Nominal

time-based simulation

The EMRALD diagrams for the valve and
pump include a single transition state given
by a single failure rate for each component
(valve failure rate = 0.002/hr, pump failure rate
= 0.003/hr) and are shown in Figure 2. The
corresponding fault tree for this example is
shown in Figure 1. From the EMRALD dynamic
simulation model ( https://github.com/
idaholab/EMRALD), we can run this example
to determine overall system failure insights. For
example, running 50,000 samples (with a compu-
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Fig. 1. The logic structure representing the parallel system under investigation.

Fig. 2. Valve and pump EMRALD simulation dia-
gram.

tation time of less than six seconds) for this ex-
ample provides the following detailed information
related to the components and system state (Table
2): While at first glance this type of information
may seem daunting, we can quickly appreciate its
worth. Further, behind this information is even a
more detailed layer of information that includes
the time of failures for specific components and
for the overall system. If we focus on one com-
ponent, say Valve 1, we see detailed information

such as those listed in Table 2.
In addition to the component failure informa-

tion, the system state is computed using the fault
tree logic. Essentially, the logic becomes an inter-
nal state-diagram for the simulation that is solved
(very rapidly) during each simulation iteration.
The overall, or baseline, results for all of the
components and the system are shown in Table
3. Comparing the values in Table 3 to the failure
rates assigned at the beginning of the simulation
by the analyst provides an indication about how
close the simulation is to the reproducing the
failure-related features of the system. In our case,
Table 3 shows very close values.

In addition to these simulation, we performed
a direct calculation of the components RAW. To
this end, we have increased the failure rate to
approximate a failure probability equal to 1 of the
components, and recomputed the simulation. This
amounts to calculate 4 × N simulations (where
N=50000 and 500,000) in our case. Table 4 reports
the results. The calculated values are very close
to the analytical values in Table 1. We could also
have proceeded with a direct calculation of the
Birnbaum importance measure, setting the com-
ponents first to always failed and then to always
working and taking the difference of the results.
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Table 2. Baseline Results for 50000 simulations

Item Results
Valve 1 failed 2330 times out of the 50000 iterations

P(Valve 1 fails) = 2330/50000 = 0.047
Mean failure time 11 hours, 52 minutes

Valve 1 fails by itself 1895 times
P(Valve 1 fails — no other failures) = 0.038

Valve 1 failed with another component 435 times
P(Valve 1 fails — one other component failure) = 0.0087

This would have mean additional model simula-
tions. This calculation strategy can become ex-
tremely expensive if either the number of compo-
nents is large or the simulation takes a long time,
as it is likely for real systems. Instead, we then
consider a direct estimation of all the importance
measures directly from the simulation results. To
do so, we consider the output of the simulation
(Table 5). The data offer full details about the
story of the system and its components iteration
by iteration. To illustrate, the last row in Table 5
shows that the system has failed in iteration 95

with Valve 2 failed after 2.76 hours and pump
one failing after 5.43 hours. Thus, in this case
Pump 1 caused the system to fail. We can then
process these data with the estimators proposed
in Section 3, obtaining the values in Table 6. For
instance, to calculate the Barlow-Proshan impor-
tance measure, we need to count all instances in
which the time of system failure was equal to the
time of a given component failure and normalize
by the number of times in which the system failed.
The comparison shows an error at most at the
second decimal place for all importance measures.
At N=50000, the minimum error is of 0.004%

for the RAW of Pump 1, the maximum of 10%

for the Barlow-Proschan importance of Valve 1.
Increasing the iterations to N = 500, 000 further
improves estimation accuracy, with a maximum
error now decreasing at 3% for the Birbaum im-
portance.

6. Conclusions

We have discussed the calculation of classical
reliability importance measures for complex relia-
bility simulations. We have proposed new estima-
tors for the Birnbaum, Risk Achievement Worth,

Fussell-Vesely and Barlow-Proschan importance
measures. These estimators eliminate the need of
performing an actual sensitivity, that is to run the
model with components set specifically to failed
or to working, notably reducing computational
burden.

Numerical experiments on a simple model
demonstrate that the estimators yield results that
closely align with the analytical values, providing
a proof of concept of the design.

The research associated with this work is in
progress. Next steps following this preliminary
investigation are the application to a more sophis-
ticated model, which includes also the simulation
of the system physics. Extensions are also to non-
coherent systems and to simulations that include
repairs and common cause failure modes.
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95 5.43 0.00 0.00 2.76 5.43
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B RAW FV BP B RAW FV BP
P1 0.115 8.883 0.618 0.292 0.105 8.747 0.609 0.305322
P2 0.119 9.178 0.634 0.328 0.105 8.780 0.608 0.293249
V1 0.111 8.565 0.403 0.178 0.105 8.925 0.418 0.205242
V2 0.113 8.680 0.403 0.202 0.106 9.011 0.421 0.196187


