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Abstract: The advent of Industry 4.0 has wholly revolutionized railway maintenance processes by integrating 

artificial intelligence, robotics, and autonomous systems, providing lots of real-time data, predictive analytics, and 

automated processes. This integration has caused new problems with human-machine interaction, workplace safety, 

and workers' physical and mental health in work environments where humans and intelligent machines collaborate. 

The paper focuses on analyzing different methodologies for monitoring psychological stress and introducing a 

mathematical model that establishes how good maintenance planning can improve worker safety and health. The 

primary purpose, in addition to the one already mentioned, is to reduce risks and accidents of operators in the 

workplace. 
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Introduction 

 
Maintenance is defined as the actions and 

activities required to maintain the good condition 

and proper functioning of devices or equipment 

(Afolalu et al., 2024). Industry 4.0 represents the 

trend toward increasing digitalization and 

automation of work environments (Oesterreich & 
Teuteberg, 2016) through artificial intelligence, 

robotics, and automated systems that improve 

collaboration between humans and machines. 

This interaction has contributed to improving 

production efficiency, reducing operating costs, 

optimizing maintenance management, predicting 

failures, and planning maintenance interventions 

more precisely. In particular, there are different 

methodologies to organize and optimize 

maintenance, such as Preventive Maintenance 

(PvM), Predictive Maintenance (PdM), or 

Condition-Based Maintenance (CBM). The 

increasing use of intelligent machines that work 

in close contact with operators has led to an 

intensification of the pace of the production chain, 

increasing the pressure related to time and 

adaptation to changes in demand and customer 

needs. These factors can compromise safety, 

performance, and efficiency in the workplace. 

However, in addition to the numerous advantages, 

human-machine interaction can have adverse 
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psychological effects on the well-being of 

workers in terms of stress and cognitive load. This 

phenomenon is a source of high costs that, added 

to the costs related to maintenance, constitute a 

significant problem for companies. 

This paper describes how implementing a failure 

probability function, influenced by operators' 

possible cognitive errors, significantly affects 

total maintenance costs. 

The paper is organized as follows: Section 1 

discusses the evolution of maintenance over time 

and the growing interaction between humans and 

robots using Industry 4.0 technologies. Section 2 

presents and describes the mathematical model, 

and Section 3 concludes regarding the model and 

the use of Industry 4.0 technologies. 

 

1. Literature Review: Evolution 

 
Maintenance refers to ensuring the device or 

equipment's proper functioning and longevity by 

addressing and preventing potential problems 

(Afolalu et al., 2024). In a context of increasing 

technological development and globalization, 

companies, especially manufacturing companies, 

are making numerous efforts to explore and 

implement a business model that is not only more 

sustainable but also capable of improving the 

speed and quality of production processes, with 

the final goal of producing high-quality products 

with flexible and reduced-cost production (Luthra 
& Mangla, 2018; Man & Strandhagen, 2017; 
Nemoto et al., 2015). 

According to (Parsaei et al., 2025), the primary 

maintenance strategies that aim to reduce 

equipment failures and production stops are 

Corrective Maintenance (CM), Preventive 

Maintenance (PvM), and Predictive Maintenance 

(PdM). Corrective Maintenance (CM) is a 

strategy applied when maintenance action is 

applied after failure. It includes activities to 

restore the equipment to its operational state. 

Preventive Maintenance (PvM), on the other 

hand, requires that the maintenance action occurs 

before the failure with a predetermined frequency. 

Finally, PdM is a strategy where the maintenance 

action occurs before the failure following careful 

and precise monitoring of the equipment 

conditions (Parsaei et al., 2025; Riccio et al., 

2024). In particular, PvM is one of the proactive 

techniques used since the beginning of 

maintenance system research as an alternative to 

Corrective Maintenance (CM), as the latter had 

more extended downtimes and higher long-term 

costs. The basic principle of a PvM system is that 

it involves predetermined maintenance activities. 

For this reason, activities are planned to replace 

components before they fail and are scheduled 

during machine shutdowns or shutdowns. The 

choice of where and when to perform this type of 

maintenance strategy is very delicate and varies 

according to the complexity of the sector in which 

it is implemented (Basri et al., 2017; Riccio et al., 

2024) 

PdM is an advancement compared to preventive 

maintenance. Thanks to the increasing diffusion 

of Industry 4.0 (I4T) technologies, it is now 

possible to collect and save large amounts of data 

from production processes. This data can be used 

not only for PdM, but also to predict future 

failures and above all to monitor the health status 

of machinery, anticipating possible failures of 

equipment and machinery (Riccio et al., 2024) 

PvM and PdM are both proactive maintenance 

approaches, focusing on eliminating the root 

causes of failures and sharing similar goals. 

However, PvM still has a limitation: It is 

performed when the machine is stopped, while 

PdM is performed while the machine continues to 

operate, ensuring constant monitoring and 

continuity of the production process (Basri et al., 

2017). 

The railway industry is one of the key sectors for 

economic growth and for public and freight 

transport (Laiton-Bonadiez et al., 2022). With the 

advent of Industry 4.0, the railway sector must 

also adapt to new technological developments, 

including Artificial Intelligence (AI), the Internet 

of Things (IoT) and Cloud Computing, 

technologies that are transforming the way 

industries address their operational challenges 

(Cockburn et al., 2018). One of the main problems 

in the railway sector is maintenance, and its high 

costs are linked to traditional measurement 

techniques  and  inspections  carried  out  by 
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maintainers, which increase the cost curve (Zhang 

et al., 2018). Real-time monitoring can increase 

the railway system's reliability, availability, 

maintainability, and safety (Dordolo et al., 2020). 

Integrating the methodologies of the fourth 

industrial revolution in railway maintenance can 

bring significant improvements that affect various 

aspects of the sector. For example, monitoring the 

status of railway machines and infrastructures can 

occur in two main phases: the production of the 

equipment and the installation on the railway 

network. During production, new technologies 

aim to minimize defects as much as possible. At 

the same time, during installation, the constant 

monitoring of components allows large amounts 

of information to be provided to AI to prevent 

possible failures. For example, (Jwo et al., 8243) 

proposed a model based on deep learning 

algorithms to automate wheelset inspections, 

improving reliability and efficiency compared to 

traditional manual inspections. Also, in train 

monitoring, the FEDORATA system, which uses 

wireless sensors, IoT, and a web server for data 

visualization, has effectively reduced 

maintenance costs (Brezulianu et al., 639). For 

railway transport, big data, IoT, and cloud 

computing allow the collection of valuable 

information to improve transport management 

processes. For example, (Jamshidi et al., 2018) 

proposed a big data-based method to optimize the 

maintenance process; big data is used to process 

the huge amount of data generated in the railway 

context, with significant applications in 

Condition-Based Maintenance (CBM). 

A crucial aspect of Industry 4.0, not only in the 

railway sector but in the industrial sector in 

general, concerns human-machine interaction to 

improve both working conditions and 

productivity thanks to a combination of the 

strengths of the individual worker and the speed 

and precision capabilities of robots. Human-robot 

interaction (HRI) has established itself as a new 

approach that allows humans and collaborative 

robots called "cobots," to combine their 

capabilities in a shared environment in order to 

achieve common goals to increase productivity 

and reduce operating costs (Gervasi et al., 2024). 

However, the increasing collaboration between 

humans and cobots has raised several safety 

concerns. The primary safety hazards in HRI 

include physical contact and collision, pinch 

points, and issues related to the speed and force of 

the robot. Standard techniques to address or 

mitigate these hazards include using proximity 

sensors or vision systems to avoid collisions and 

integrating corrective action systems that prevent 

collisions without interrupting the robot’s 

operation. Furthermore, some standards, such as 

ISO 10218-2:2011 and ISO/TS 15066:2016, have 

been introduced to regulate and improve safety in 

Human-Robot Interaction (HRI). 

In Human-Robot Interaction, there is an 

increasing interest in studying workers’ mental 

conditions, such as stress and mental load, as 

these factors influence the interaction with robots. 

To optimize the quality of the interaction and the 

results, some researchers, including Ahmed et al., 

suggest the importance of controlling both human 

characteristics (stress and mental load) and 

process characteristics (work mode and robot 

speed) (Gualtieri et al., 2022). Methods to 

evaluate these interactions include performance 

metrics and subjective feedback, such as 

questionnaires (SUS, SAM, NASA-TLX, SWAT, 

and ISA) that measure usability, emotional states, 

and perceived workload. 

However, questionnaires are particularly effective 

for short and qualitative tasks; for complex and 

prolonged tasks, interrupting the activity to 

answer can be disruptive, and in these cases, 

monitoring physiological data (e.g., heart rate or 

brain activity) is helpful to collect information 

without interrupting operations (Gervasi et al., 

2024). 

The lack of cognitive ergonomics can cause an 

increase in errors, resulting from confusion, 

cognitive overload, or difficulty in interpreting 

information, directly impacting operating costs. 

This is reflected in dissatisfaction, stress, 

demotivation, and absenteeism, resulting in costs 

for hiring, selecting, and training new staff. A 

non-optimized system requires longer usage times 

and increases the cognitive load, with decreased 

productivity and efficiency directly affecting 

profits. Finally, the health costs for the company 

and society should not be underestimated, as a job 

that requires high concentration or causes stress 

and mental fatigue can lead to health problems 

(such as burnout or chronic stress, technostress). 

Fig.1 shows the effects of Industry 4.0 on health 

and safety at work, organizing the impacts into 
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different categories: psychological, cognitive, 

physical, and organizational (Bispo & Amaral, 
2024). 

 

 

 
Fig.1 Categories of effects generated 

by Industry 4.0 on operators OHS (derived by 

Bispo & Amaral, 2024) 

 

2. Methodology 
 
Based on the work carried out by (Çelik & König, 
2022), the function that could better explain the 

effect of an operator's cognitive stress within the 

maintenance planning process, particularly 

railway maintenance, is a sigmoid function Fig.2. 

In literature, this type of function is widely used 

in numerous fields, especially in neuroscience 

(Williams et al., 2009), therefore very similar to 

the problem relating to the cognitive stress of 

maintenance workers. 

 

 

Fig.2 Sigmoid Curve (adapted by (Williams et 

al., 2009) 

A defect of this function is related to the fact that 

it can progress abruptly, quickly reaching the 

saturation condition. By introducing a sensitivity 

indicates how quickly the cognitive error 

approaches the critical threshold (Critical), it was 

possible to limit this defect. A solution that was 

impossible to obtain using an exponential 

function characterized by an even more sudden 

evolution. So, a function is defined relating to the 

probability of the cognitive error Eq.(1) with the 

parameters reported in Table 1. 

 

 
1 

Pcognitive error(Sc) = 
1 + e (Sc critic)  (1) 

 

 

 

 

Table 1. List of parameters 
 

Notation Definition 

Pcognitive error Probability of cognitive error 

 Parameter for the slope of the 

logistics function 

Sc Cognitive stress level of the 

operator 

Scritic Maximum stress threshold 

 

 

 

Once this function has been defined, in general, 

the total probability of failure Eq.(2) is evaluated, 

considering the cognitive stress, which is given by 

the probability of failure of the single railway 

component as a function of the mileage and the 

probability of cognitive error of the operator, 

which represents the influence of the cognitive 

stress of the personnel on the risk of failure. This 

function is adopted, since adding only the two 

probabilities would have given greater emphasis 

to the cognitive error, moving away from a 

realistic condition. The parameters are reported in 

Table 2. 

 

 

Pfailure (Sc) = Pbf  (1 +   Pce(Sc))  (2) 
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Table 2. List of parameters 
 

Notation Definition 

Pfailure(Sc) Total failure probability 

Pbase failure Failure probability based on 

mileage 

 Amplification coefficient 

Pcognitive error(Sc) Cognitive failure probability 

of the operator 

 

 

 

In conclusion, to obtain an overview of railway 

maintenance planning in relation to the operator's 

cognitive stress, a cost function Eq.(3) is 

employed. This function considers the number of 

preventive maintenance interventions based on 

Condition-Based Maintenance (CBM) and the 

associated costs, combined with the corrective 

costs resulting from the probability of failure as a 

function of the operator's cognitive stress. The 

parameters are reported in Table 3. 

 

 

Ctot = rated + Pfailure(Sc) corrective  (3) 
 

 

 

 

Table 3. List of parameters 
 

Notation Definition 

Ctot The total cost of maintenance 

 

n 

 

Number of preventive interventions 
Crated Cost for each preventive maintenance 

intervention 

PFailure(Sc) Total failure probability 

Ccorrective Cost of each corrective maintenance 

intervention 

 

 

 

 

2.1 Experimental Case 
 
To analyse the effectiveness of the proposed 

mathematical model, an experimental study 

focusing on railway maintenance planning is 

designed. The goal is to quantify the total failure 

probability and the associated maintenance costs, 

considering the influence of operator cognitive 

stress. The values used may vary according to the 

type of vehicle and infrastructure. 

 

Context and Parameters: The case assumes a 

railway company planning the maintenance of its 

vehicles, considering the following parameters in 

Table 4: 

 

 

 
Table 4. List of parameters 

 

Notation Value 

Pbase failure 0.02 

 3.0 

 0.5 

Scritic 6 

Sc 8 

n 10 

Crated 500€ 

Ccorrective 5000€ 

 

The function, Pcognitive error (Sc), is modelled as a 

sigmoid function. 

 

Results and Calculation: 

 

By considering a Scritic equal to 6 and substituting 

this value in Eq.(1), we obtain: 

 
1 

Pcognitive error(6) = 
1 + e ( ) =  

 

For Eq.(2), the value is calculated as: 

 

Pfailure (Sc) =  (1  ) =  

 

Finally, for Eq.(3), we obtain a value equal to: 

 

Ctot =   +   =  

 

The case study highlights the model's 

applicability in assessing failure probabilities and 
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maintenance costs under realist conditions. The 

total failure probability was found to be 3.6 % 

 

significantly influenced by operator cognitive 

stress. The total maintenance cost, which included 

preventive and corrective interventions, was 

calculated at 5180€. This example shows the 

importance of considering human factors in 

maintenance planning to optimize safety and cost 

efficiency. 

 

2.2 Discussion 
 
The experimental case demonstrates how to work 

the proposed model by integrating operator 

cognitive stress for failure probability 

calculations to improve railway maintenance 

planning. However, the model has limitations 

such as the simplification of cognitive stress into 

a single variable, parameters being treated as 

static and not dynamic, environmental and 

equipment conditions, or the cost of Corrective 

and Preventive Maintenance being considered 

fixed. Despite this limitation, this model provides 

a good solution to improve maintenance planning. 

Future improvement could consider a dynamic 

context by including operator fatigue, 

environmental and equipment conditions or team 

dynamics. The paper presents a proposed 

mathematical model that quantifies the influence 

of cognitive errors on overall maintenance costs, 

highlighting the critical relationships between 

these variables. Furthermore, the implications of 

these findings are significant for organizations 

adopting Industry 4.0 technologies in the context 

of railway maintenance, as they can improve 

operational efficiency and inform strategic 

decision-making. 

The proposed sigmoid-based probability model 

offers unique advantages over traditional 

exponential or linear models by accounting for 

gradual changes in cognitive stress. This approach 

provides help for railway maintenance planning. 

 

 

3. Conclusion 

Using Industry 4.0 technologies in the railway 

sector improves operational efficiency, 

sustainability, and safety. Tools like IoT, Big 

Data, and AI enable predictive maintenance, 

reduce downtime, and optimize resource use. In 

addition, advanced solutions help reduce energy 

consumption and environmental impact, making 

rail transport greener and more innovative. 

Through its objective function, the proposed 

model's main objective is to optimize railway 

maintenance activities by considering and 

minimizing operating costs and workers' well- 

being. In an environment increasingly 

characterized by advanced technologies, such as 

collaborative robots, this approach is essential to 

ensuring the right balance between efficiency and 

operators' well-being. 

Future model developments focus on greater 

customization, adaptability, and integration with 

advanced technologies and real-time monitoring 

systems. These improvements will increase the 

efficiency of railway maintenance operations and 

help create a more sustainable, safe, and 

productive work environment, promoting 

harmony between man and machine. 
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